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A B S T R A C T

Support vector machines (SVMs) are a powerful machine learning paradigm, performing supervised learning for
classification and regression analysis. A number of SVM models in the literature have made use of advances in
mixed-integer linear programming (MILP) techniques in order to perform this task efficiently. In this work, we
present three new models for SVMs that make use of piecewise linear (PWL) functions. This allows effective
separation of data points where a simple linear SVM model may not be sufficient. The models we present
make use of binary variables to assign data points to SVM segments, and hence fit within a recently presented
framework for machine learning MILP models. Alongside presenting an inbuilt feature selection operator, we
show that the models can benefit from robust inbuilt outlier detection. Experimental results show when each of
the presented models is effective, and we present guidelines on which of the models are preferable in different
scenarios.
1. Introduction

Machine learning (ML) is a branch of artificial intelligence which
utilises methods from statistics and computer science to perform com-
plex data analysis tasks (Marsland, 2011). As opposed to ML methods
which make predictions, mixed-integer programming (MIP) approaches
aim to make decisions. Although there is a vast amount of research
into these growing fields, the recent advances in the computing power
of MIP solution software have rarely been utilised in tandem with
ML approaches (Bertsimas & Dunn, 2019). While MIP models tend to
be slow, an extended understanding of their solution methods means
tailored approaches can be applied to increase their efficiency and aid
in the solution of ML problems.

Supervised learning is a subfield of ML which aims to train a model
on labelled data. Examples of supervised learning methods which
have been approached from a mathematical programming perspec-
tive include regression and classification problems (Park et al., 2017;
Rebennack & Krasko, 2020; Sudermann-Merx & Rebennack, 2021).
Recently, Warwicker and Rebennack (2023b) presented a framework
of mixed-integer linear programming (MILP) models for regression and
clustering problems, whereby the knowledge of the special structure of
the models allows for improvements in efficiency and robustness.

Another well-known supervised ML approach is support vector ma-
chines (SVMs), which are a robust prediction method based on statistic
learning theory (Boser et al., 1992; Cortes & Vapnik, 1995; Vap-
nik, 1998). The aim of SVMs is to classify labelled data, allowing
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for predictions based on new inputs. Given a set of training exam-
ples, each labelled as belonging to one of two categories, SVMs find
a separating hyperplane such that the distance to the nearest data
points is maximised (i.e., maximising homogeneity), while misclassifi-
cation errors are minimised. Applications of SVMs are seen in many
fields, including finance (Fieberg et al., 2023; Huang et al., 2005),
medicine (Guyon et al., 2002) and computational biology (Noble,
2006), alongside problem decomposition for combinatorial optimisa-
tion problems (Sun et al., 2021, 2019). For a general overview of
SVM approaches, see e.g., Burges (1998) and Christmann and Steinwart
(2008).

While finding an SVM has typically been approach from a ma-
chine learning perspective, a number of mathematical programming
approaches have been presented in the literature. Early approaches
for classifying separable data were presented by Mangasarian (1965),
which assumes the convex hulls of each set of labelled data do not in-
tersect, and Mangasarian (1968), where the assumption on the convex
hulls is bypassed. These approaches used simple linear programming
(LP) methods to find the separating hyperplanes. In particular, when
the convex hulls intersect, the latter method presented a separating
plane consisting of connected non-linear manifolds — we refer to this
as a piecewise linear (PWL) SVM in the remainder of this paper.

Among the first mathematical programming approaches, Vapnik
(1998) presented a non-linear mathematical programming model for
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SVM based on statistical learning theory. Their approach aims to min-
imise the structural risk, which is calculated as the width of the margin
f the hyperplane (i.e., how close it is to the nearest data points).
urthermore, they introduce a penalty term for misclassification er-
ors, which is known as minimising the empirical risk. Bradley and

Mangasarian (1998) presented the first LP formulations for SVM using
a linear distance metric, without any assumptions on the data. Zhou
et al. (2002) presented a linear programming SVM model which di-
rectly controls the maximisation of the margin by introducing another
variable, allowing for increased efficiency (at a small cost to the overall
accuracy). Note that these models are unsuitable for non-separable
data.

The models described above utilise a parameter to control the
tradeoff between structural and empirical risk. Another consideration
to make in SVM models is which features of the data to select. Typically,
the number of features of a data set is much larger than the number
of data points, and handling all of the features leads to very ineffi-
cient models with results that are difficult to interpret. Appropriately
selecting features reduces these risks and minimises overfitting risks.
Regarding feature selection in MILP models for SVM, Maldonado et al.
(2014) proposed an extension of the previously discussed formulations
which implement feature selection within the model, by introducing
a budget constraint to limit the number of features that are used.
Furthermore, the cost of acquiring each feature is considered. Benítez-
Peña et al. (2019) presented an integer linear programming approach
for SVM incorporating cost-sensitive feature selection, where the ob-
jective function explicitly minimises misclassifications while limiting
the number of features. Labbé et al. (2019) presented a MILP model
for feature selection in SVM which works by bounding the weights
of the variables, as well as the use of a budget constraint. The value
of the bounds of the weights is crucial to the performance of their
formulation; hence, a number of methods are discussed to find tight
bounds. A similar problem is considered in Baldomero-Naranjo et al.
(2020), where heuristic methods are proposed.

Baldomero-Naranjo et al. (2021) recently proposed a MILP formu-
lation for SVM which implements simultaneous feature selection and
outlier detection; their model also utilises heuristics to model the big-M
values and to find solutions efficiently. Aside from robust approaches,
recent advances in mathematical programming formulations for SVM
models have considered noisy data (see e.g., Blanco et al., 2022) and
semi-supervised approaches (see e.g., Burgard et al., 2023).

In general, the approaches above are limited by either an assump-
tion on the separability of the data, or by the shape requirements on
the separating hyperplane that is being built (i.e., its linearity and
connectivity). In this paper, we present extensions of the current models
for SVM that allow for more accurate classification. The SVMs model
we present are analytical in nature, and can be used for training models
on the given data. In particular, we present relaxations that allow the
separating hyperplanes to be constructed as continuous PWL functions.
The models we present are inspired by existing MILP models for PWL
regression and clustering (Park et al., 2017; Rebennack & Krasko,
2020; Warwicker & Rebennack, 2023b). Due to the special symmetrical
structure of these models, their reliance on binary variables to assign
data points to segments of the hyperplanes, and the logical implications
modelled by big- constraints, they allow improvements to be made
in terms of efficiency and robustness.

In particular, this paper has the following contributions:

• We firstly present three new MILP models for SVM. The first
allows the data to be modelled by multiple, non-connected linear
hyperplanes; the second fits a single, continuous PWL hyperplane
to classify the data; the third allows the data to be modelled by a
number of continuous PWL hyperplanes.

• We discuss how the three presented models fit within the recently
presented framework for similar regression- and classification-
based machine learning problems presented by Warwicker and
Rebennack (2023b). This allows the implementation of inbuilt
outlier detection.
2

• We present an extension of the framework to allow for feature
selection, which is based on SVM models in the literature.

• We present experimental results on a series of ad-hoc data sets de-
signed to showcase where each model is most effective, alongside
a series of real-world data sets exhibiting similar characteristics.
We further compare the presented models with a state-of-the-art
SVM model with implicit outlier detection and explicit feature
selection.

The rest of this paper is structured as follows. In Section 2, we dis-
cuss existing quadratically constrained and mixed-integer linear models
for SVM from the literature. We introduce three new MILP models for
SVM in Section 3, and discuss how they fit within the existing MILP
framework for machine learning models in Section 4. We present an
experimental analysis in Section 5, and we conclude with Section 6.

2. Mathematical programming models for support vector mach-
ines

2.1. Preliminaries

Throughout this paper we use the following notation: [𝑛] to denote
the set {1,… , 𝑛}; ‖ ⋅ ‖𝑘 denotes the 𝓁𝑘 norm (for 𝑘 ∈ {1, 2,∞}).

Consider a set of data 𝛺, which has been partitioned into two
classes. Each object 𝑖 ∈ [𝐼] in 𝛺 is represented by a pair (𝑥𝑖, 𝑧𝑖) ∈
𝑛 × {−1, 1}, where 𝑛 is the number of features of the data. 𝑥𝑖 contains

he (continuous) values of such features, and 𝑧𝑖 provides the fixed
abels, either 1 or −1, associated with the two classes in 𝛺.

For a given set of labelled objects, the support vector machine
SVM) determines a separating hyperplane 𝑓 (𝑥) ∶= 𝑤⊺ ⋅ 𝑥 + 𝑑 = 0 that
ptimally separates the two classes (where 𝑤 is the normal vector to
he hyperplane, with weights 𝑤𝑛 for each feature 𝑛 ∈ [𝑛]). If the data is
inearly separable, two parallel hyperplanes that separate the data can
e found such that the distance between them is maximised (with the
aximum-margin hyperplane 𝑓 (𝑥) lying between them). Data labelled
ith 𝑧𝑖 = 1 should lay on or above the hyperplane 𝑤⊺ ⋅ 𝑥 + 𝑑 = 1,
hile data labelled with 𝑧𝑖 = −1 should lay on or below the hyperplane
⊺ ⋅ 𝑥 + 𝑑 = −1. The distance between the hyperplanes is given by
∕‖𝑤‖, so to maximise the distance between the planes, we wish to
inimise some function of ‖𝑤‖. To prevent data falling into the margin,
e require
⊺ ⋅ 𝑥𝑖 + 𝑑 ≥ 1 if 𝑧𝑖 = 1,
⊺ ⋅ 𝑥𝑖 + 𝑑 ≤ −1 if 𝑧𝑖 = −1.

hat is,

𝑖(𝑤⊺ ⋅ 𝑥𝑖 + 𝑑) ≥ 1 ∀𝑖 ∈ [𝐼] (⋆).

If the data is not linearly separable, the hyperplane should also seek
o minimise classification errors (i.e., to penalise those data points not
dhering to equation (⋆)). The classical SVM model objective function
s a compromise between structural risk (given by a function of the
nverse of the margin, ‖𝑤‖) and the empirical risk (given by a function
f the total deviation of misclassified objects) (Vapnik, 1998; Zhou
t al., 2002).

.2. Linear programming models for SVM

The classical formulation for SVM, which was introduced by Bradley
nd Mangasarian (1998), introduces a slack variable (𝜉𝑖 ∈ R+) for each
ata point to measure the deviation if that data point is misclassified.
penalty parameter 𝐶 > 0 is also introduced to balance the tradeoff

etween structural and empirical risk.

𝓁2 − SVM) min 1
2
‖𝑤‖

2
2 + 𝐶

𝐼
∑

𝑖=1
𝜉𝑖 (1a)

s.t. 𝑧 (𝑤⊺𝑥 + 𝑑) ≥ 1 − 𝜉 ∀𝑖 ∈ [𝐼] (1b)
𝑖 𝑖 𝑖
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𝜉𝑖 ≥ 0 ∀𝑖 ∈ [𝐼] (1c)

The objective function (1a) aims to minimise the structural risk
using the 𝓁2 norm) and empirical risk. If a data point 𝑖 is misclassified
i.e., it has label 𝑧𝑖 = 1 and lies below the line, or has label 𝑧𝑖 = −1 and
ies above the line), then constraint (1b) assigns a non-negative value to
𝑖 to measure how far it has deviated. Constraint (1c) gives the domain
f the continuous variables 𝜉𝑖.

Bradley and Mangasarian (1998) also presented a linear formulation
sing the 𝓁1 norm, where the objective function is replaced by:

𝓁1 − SVM) min ‖𝑤‖1 + 𝐶
𝐼
∑

𝑖=1
𝜉𝑖 (2)

An equivalent linear formulation is presented in formulation (3). In
rder to guarantee the linearity, the absolute values of the weights of
he hyperplane coefficients are calculated.

𝓁1 − SVM) min
𝑛
∑

𝑗=1
𝑊𝑗 + 𝐶

𝐼
∑

𝑖=1
𝜉𝑖 (3a)

s.t. (1b)–(1c) (3b)

𝑤𝑗 ≤ 𝑊𝑗 ∀𝑗 ∈ [𝑛] (3c)

𝑤𝑗 ≥ −𝑊𝑗 ∀𝑗 ∈ [𝑛] (3d)

𝑊𝑗 ≥ 0 ∀𝑗 ∈ [𝑛] (3e)

The objective function (3a) again seeks to minimise the structural
nd empirical risk. However, the structural risk is calculated somewhat
ifferently. Constraints (3c)–(3e) calculate the absolute values of each
f the weights to guarantee a linear formulation.

Zhou et al. (2002) presented another linear programming formula-
ion for SVM. Their formulation, which explicitly controls the maximi-
ation of the margin through the introduction of a continuous margin
ariable 𝑟, uses ideas from statistical learning theory (Vapnik, 1998).
y seeking explicitly to maximise the margin, as well as minimising
he empirical risk in the case of non-separable data, the overall risk
s minimised, while some generalisation is lost in the simplicity of the
ormulation. We present their model in formulation (4).

LP − SVM) min − 𝑟 + 𝐶
𝐼
∑

𝑖=1
𝜉𝑖 (4a)

s.t. 𝑧𝑖(𝑤⊺𝑥𝑖 + 𝑑) ≥ 𝑟 − 𝜉𝑖 ∀𝑖 ∈ [𝐼] (4b)

− 1 ≤ 𝑤𝑗 ≤ 1 ∀𝑗 ∈ [𝑛] (4c)

𝜉 ≥ 0 ∀𝑖 ∈ [𝐼] (4d)

𝑟 ≥ 0 (4e)

In formulation (4), the weights of the hyperplane are constrained (in
onstraint (4c)) to lie between −1 and 1. Instead, the margin variable
, which is calculated in constraint (4b) and (4e), is minimised in
he objective function (4e). The loosening of the margin (through the
ariable 𝑟) leads to some loss of generalisation; however, this can lead
o vast speedups (Zhou et al., 2002).

To illustrate the application of SVM, we apply the linear formula-
ion (3) to a synthetic data set. We set the value of the penalty term
= 10 in order to focus on minimising the empirical risk. Fig. 1a

hows an application to a separable data set, in which the margin is
inimised. In this case, each data point is correctly classified and lies

utside (or on) the margin, meaning 𝜉𝑖 = 0 for each 𝑖 ∈ [𝐼]. The
bjective function value in this case is given by the structural risk, and
s 1.94.

For Fig. 1b, we exchanged the labels of two data points, resulting in
non-separable data set. In this case, the margin is increased, meaning

ight data points now fall within the margin. The misclassification error
f the two exchanged data points leads to a large objective function
alue. In this case, outlier detection might prove useful, whereby the
3

esulting model will better fit the non-outlier data points. In this case,
he structural risk is calculated as 1.17, whereas the empirical risk is
alculated as 9.05; this leads to an objective function value of 91.67
i.e., 1.17 + 9.05𝐶). If we decrease the value of 𝐶, we see a larger sum
f the slack values (contributing to the empirical risk), with a smaller
alue of the structural risk. This highlights the importance of setting
he parameter 𝐶. This effect is discussed further in Section A of the
ppendix.

For a comprehensive overview of LP formulations for SVM, see
.g., (Rivas-Perea et al., 2012).

.3. Mixed-integer linear models: Implementing feature selection

In most cases, data sets often contain data with a large number
f features, many of which are noisy, irrelevant or redundant. Hence,
eature selection is necessary to identify the most relevant features, as
ell as reducing computational costs. Recent approaches for SVM have
mbedded feature selection within the models.

Feature selection can be classified in three ways (Guyon et al.,
008). Wrapper methods aim to measure the usefulness of the features
ased on the performance of the classifier (i.e., the SVM), while filter
ethods aim to measure the relevance of the feature via statistics.
hile wrapper methods are more useful since they are attempting to

ptimise the performance of the classifier, they are more computa-
ionally expensive. Embedded methods aim to simultaneously perform
eature selection and classifier construction, and can be thought of as
compromise between the two former methods.

In practical applications for SVM, these methods aim to select the
est subset of features based on the misclassification cost, and the cost
f acquiring each feature (Freitas et al., 2007). From an optimisation
erspective, bio-inspired heuristics for implementing feature selection
ithin SVM models have recently been considered (see e.g., Aladeemy
t al., 2017; Alcaraz et al., 2022; Huang & Wang, 2006), alongside
athematical programming approaches. The goal of the following
ixed-integer linear programming (MILP) models is to implement em-

edded feature selection within the model. This is typically done using
binary variable for each feature, which is set to 1 if that feature is

hosen.
Maldonado et al. (2014) presented an extension of formulation (3)

first presented by Bradley and Mangasarian (1998)) to include feature
election. For each feature 𝑗 ∈ [𝑛], the relative weight is bounded above
nd below, and the cost of acquiring each feature is given by 𝑐𝑗 ≥ 0 (if
his information is unavailable, this can be fixed to 1 for all features).
he budget 𝐵 > 0 limits the amount of features to be selected.

𝑙1 − SVMF) min
𝐼
∑

𝑖=1
𝜉𝑖 (5a)

s.t. 𝑧𝑖(𝑤⊺𝑥𝑖 + 𝑑) ≥ 1 − 𝜉𝑖 ∀𝑖 ∈ [𝐼] (5b)

𝐿𝑗𝑣𝑗 ≤ 𝑤𝑗 ≤ 𝑈𝑗𝑣𝑗 ∀𝑗 ∈ [𝑛] (5c)
𝑛
∑

𝑗=1
𝑐𝑗𝑣𝑗 ≤ 𝐵 (5d)

𝑣𝑗 ∈ {0, 1} ∀𝑗 ∈ [𝑛] (5e)

𝜉𝑖 ≥ 0 ∀𝑖 ∈ [𝐼] (5f)

The objective function (5a) minimises the sum of errors (i.e., the
mpirical risk), where the errors are calculated in constraint (5b).
f the binary variable 𝑣𝑗 (for feature 𝑗 ∈ [𝑛]) is set to 1, then the
eight is bounded within the limits [𝐿𝑗 , 𝑈𝑗]; otherwise, it is set to 0.
onstraint (5d) ensures the optimal selection of features such that the
udget is not exceeded, while constraints (5e)–(5f) give the variable
omains.

Formulation (5) does not explicitly aim to minimise the structural
isk in the objective function (5a). However, features are selected (in
onstraints (5b)–(5e)) using a budget constraint, while forcing the
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Fig. 1. An example of 𝓁1-SVM applied to a synthetic data set using (a) Separable data; (b) Non-separable data.
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weights for each feature to fall within a given interval [𝐿𝑗 , 𝑈𝑗 ] (if
selected, i.e., if 𝑣𝑗 = 1). Hence, the binary variables and the weight
vector 𝑤 are linked, which implicitly minimises the structural risk while
avoiding the requirement for a trade-off parameter 𝐶.

Maldonado et al. (2014) also presented a similar extension to for-
mulation (4) (first presented by Zhou et al. (2002)), in which the
maximisation of the margin is explicitly controlled. In both models,
for a given budget 𝐵 > 0, it is possible that there are a number of
different solutions with objective value 0, which is typical for data
sets with many more features than objects. Hence, Labbé et al. (2019)
proposed the following extension of formulation (5), which, as well as
implementing feature selection using a budget constraint, also takes the
structural and empirical risk into account. The weights are decomposed
into a positive and negative part, of which at most one is non-zero. For
ease of presentation, the costs of acquiring each feature are set to 1,
and the budget 𝐵 states how many features can be selected.

(𝑙1 − SVM′
F) min

𝑛
∑

𝑗=1
(𝑤+

𝑗 +𝑤−
𝑗 ) + 𝐶

𝐼
∑

𝑖=1
𝜉𝑖 (6a)

s.t. 𝑧𝑖

( 𝑛
∑

𝑗=1
(𝑤+

𝑗 −𝑤−
𝑗 )𝑥𝑖𝑗 + 𝑑

)

≥ 1 − 𝜉𝑖 ∀𝑖 ∈ [𝐼] (6b)
𝑛
∑

𝑗=1
𝑣𝑗 ≤ 𝐵 (6c)

𝑤+
𝑗 ≤ 𝑢𝑗𝑣𝑗 ∀𝑗 ∈ [𝑛] (6d)

𝑤−
𝑗 ≤ −𝑙𝑗𝑣𝑗 ∀𝑗 ∈ [𝑛] (6e)

𝑤+
𝑗 ≥ 0, 𝑤−

𝑗 ≥ 0 ∀𝑗 ∈ [𝑛] (6f)

(5e)–(5f) (6g)

Formulation (6) explicitly calculates the structural and empirical
risk to disambiguate between solutions that would attain the same
objective value in formulation (5). In particular, the objective func-
tion (6a) calculates the structural risk as the sum of the positive and
negative aspects of the weight, while the empirical risk is calculated
again as the sum of errors. Constraint (6b) acts similarly to the previous
models (e.g., to constraint (5b)), and constraint (6c) imposes a budget
on the features (assuming uniform costs). Then, constraints (6d)–(6e)
calculate the positive and negative parts of the weights for the features
that are selected, while constraint (6f) ensures their non-negativity.

Lee et al. (2020) also allowed for group feature selection within the
model, as well as selecting individual features. In their proposed model,
savings can be made by selecting from a group of features compared
to selecting them individually. Furthermore, they presented a robust
model that allows for uncertainty in the feature costs. Baldomero-
Naranjo et al. (2021) presented an advancement of the robust SVM
4

p

model first presented by Brooks (2011) which implements feature selec-
tion alongside outlier detection. The feature selection is implemented
similarly to Labbé et al. (2019) using a budget variable, and the outlier
detection works similarly.

The models described within this subsection require tight upper and
lower bounds for the weights, which act as big- constructs. Belotti
et al. (2016) presented a non-convex, non-linear model (based on
the quadratically-constrained mixed-integer model for SVM presented
by Brooks (2011)), which reformulates the initial model to avoid
relying on complicating big- constraints. Somewhat surprisingly,
they found the reformulated model was faster; however, recent ad-
vancements in MILP solution software (such as CPLEX) have since
implemented many of the modelling aspects that led to the increased
efficiency of the reformulated model, such as aggressive bound tight-
ening. Labbé et al. (2019) considered two approaches to find tight
values for the big- constants, including an exact approach in which a
simplified linear relaxation of the MILP is iteratively solved until tight
bounds have been computed. Baldomero-Naranjo et al. (2021) also
presented a number of approaches for tightening the big- constraints
ased on approaches introduced by Baldomero-Naranjo et al. (2020).

. A framework for piecewise linear support vector machines

The models presented in the previous section produce a separating
yperplane with a maximised margin to classify labelled data. This
llows the predicted classification of future data points based on their
elative position to the hyperplane. In this section, we present a frame-
ork consisting of three new models for finding SVM in R2. The basis

of this framework is that instead of presenting a singular, linear hy-
perplane, a more accurate classification of data can be provided using
a connected, piecewise linear (PWL) hyperplane. PWL hyperplanes for
SVM have been presented by, e.g., Mangasarian (1968), which allow for
data sets that are non-separable by traditional SVM methods to become
separable. Furthermore, for data which does not adhere to a strict,
linear relationship, a PWL separating hyperplane will allow for better
models, and retain the linearity which makes non-linear hyperplanes
difficult to calculate.

PWL functions consist of connected linear segments which intersect
at breakpoints. The models we present in this section use binary
variables to assign data points to their respective segments. Hence,
it is important that the number of segments is chosen well. If the
number of segments in the PWL function is too large, this can lead to
redundant segments and present possible occurrences of overfitting the
given data. Further problems can occur when all data points associated
with a given segment share the same label; in such cases, the model
may suggest a hyperplane that is far away from the data, which
provides little information. We further use big- constraints within
he presented formulations to model logical implications, implying the
fficiency of the models depends on the tightness of the big- values.
e present a discussion on how to overcome such problems after we
resent the models.
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3.1. Model 1: Fitting multiple hyperplanes

As a first preliminary model, we present a simple extension to
formulation (3) which allows the data to be modelled by multiple,
i.e., 𝐵 ≥ 1, disconnected (linear) hyperplanes. Each data point 𝑖 ∈ [𝐼]

ill be assigned to one hyperplane 𝑏 ∈ [𝐵], using a binary variable
nd a big- constraint. We require the data points to be ordered by
ome feature (for example, if a number of different observations are
ecorded at different time points, the variable representing time will
e ordered). We note that although the choice of feature can affect the
uality of the resulting SVM model, this choice can be typically inferred
rom the data set and the goal of the classification task. To achieve the
odelling, we use the ordering constraints for PWL regression functions

hat were introduced by Rebennack and Krasko (2020). This will allow
s to ensure that the model does not assign one hyperplane to all data
oints with a given label. The resulting hyperplanes will be of the form
⊺
𝑏𝑥𝑖 + 𝑑𝑏 = 0, for 𝑏 ∈ [𝐵]. We present Model 1 (denoted as PWL-SVM1)

n formulation (7).

PWL-SVM1)

in
𝐵
∑

𝑏=1

𝑛
∑

𝑗=1
𝑊𝑏,𝑗 + 𝐶

𝐼
∑

𝑖=1
𝜉𝑖 (7a)

s.t. 𝑧𝑖(𝑤
⊺
𝑏𝑥𝑖 + 𝑑𝑏)

≥ 1 − 𝜉𝑖 −𝑀1
𝑖 (1 − 𝛿𝑖,𝑏) ∀𝑖 ∈ [𝐼]; 𝑏 ∈ [𝐵] (7b)

𝑤𝑏,𝑗 ≤ 𝑊𝑏,𝑗 ∀𝑏 ∈ [𝐵]; 𝑗 ∈ [𝑛] (7c)

𝑤𝑏,𝑗 ≥ −𝑊𝑏,𝑗 ∀𝑏 ∈ [𝐵]; 𝑗 ∈ [𝑛] (7d)
𝐵
∑

𝑏=1
𝛿𝑖,𝑏 = 1 ∀𝑖 ∈ [𝐼] (7e)

𝛿𝑖+1,𝑏+1 ≤ 𝛿𝑖,𝑏 + 𝛿𝑖,𝑏+1 ∀𝑖 ∈ [𝐼 − 1]; 𝑏 ∈ [𝐵 − 1] (7f)

𝛿𝑖+1,1 ≤ 𝛿𝑖,1 ∀𝑖 ∈ [𝐼 − 1] (7g)

𝛿𝑖,𝐵 ≤ 𝛿𝑖+1,𝐵 ∀𝑖 ∈ [𝐼 − 1] (7h)

𝜉𝑖 ∈ [0,𝑀1
𝑖 ] ∀𝑖 ∈ [𝐼] (7i)

𝛿𝑖,𝑏 ∈ {0, 1} ∀𝑖 ∈ [𝐼]; 𝑏 ∈ [𝐵] (7j)

𝑊𝑏,𝑗 ≥ 0; 𝑤𝑏,𝑗 ∈ R ∀𝑏 ∈ [𝐵]; 𝑗 ∈ [𝑛] (7k)

The objective function (7a) seeks to minimise the total structural
risk across the 𝐵 hyperplanes, as well as the total empirical risk. Such
an objective function mirrors that of formulation (3) and we utilise
this objective function in order to ensure the linearity of the model.
In the objective, the sum of the absolute values of the weights is used
to give the structural risk, and the sum of the error terms provides
the empirical risk. The weights and error terms are calculated in
constraint (7b), while the absolute values of the weights are calculated
in constraints (7c)–(7d).

Constraint (7e) ensures that each data point is only associated with
one hyperplane. That is, for data point 𝑖 ∈ [𝐼], the binary variable 𝛿𝑖,𝑏
is set to 1 if this data point is associated with hyperplane 𝑏 ∈ [𝐵].
In this case, the values of the weights 𝑤𝑏,𝑗 (for feature 𝑗 ∈ [𝑛]) and
the error term 𝜉𝑖 are calculated as in constraint (7b). If 𝛿𝑖,𝑏 = 0, then
constraint (7b) can essentially be ignored as the calculation would be
dominated by the big- term, not limiting the setting of the weights
and errors.

Constraints (7f)–(7h) ensure the ordering of the data points amongst
hyperplanes (as presented by Rebennack and Krasko (2020)). If these
constraints were omitted, the formulation could then associate all data
points of one class to one hyperplane, and all the other data points to
another one. Constraints (7i)–(7k) present the domains of the variables.

Regarding the big- terms in constraint (7b) (and constraint (7i)),
they should be large enough such that in the case where 𝛿𝑖,𝑏 = 0, then
𝜉𝑖 gets set to 0. That is, we require

𝑀1 ≥ max 𝑧𝑖(𝑤
⊺𝑥𝑖 + 𝑑𝑏)
5

𝑖 𝑏∈[𝐵] 𝑏
for all 𝑖 ∈ [𝐼]. We can calculate this term for each data point by
considering the line connecting that data point to another as the normal
vector to a hyperplane. Then, the maximum value of the normal vector
will give a bound on the value of 𝑀1

𝑖 for that data point. In particular,
suppose the line connecting two points is given by 𝑦 = 𝑐𝑥 + 𝑑; this is
equivalent to a hyperplane of 𝑐𝑥1−𝑥2+𝑑 = 0. Hence, we seek to find the
maximum possible value of 𝑧𝑖(𝑐𝑥1 − 𝑥2 + 𝑑) for each data point 𝑖 ∈ [𝐼]
given by (𝑥𝑖,1, 𝑥𝑖,2, 𝑧𝑖).

Let [𝐶,𝐶] and [𝐷,𝐷] be extreme values for the gradient and in-
tercept respectively, calculated by interpolating between all possible
pairs of data points (see e.g., Rebennack & Krasko, 2020; Warwicker
& Rebennack, 2023a for exact derivations of these terms). Then, for
𝑖 ∈ [𝐼], we can set:

1
𝑖 ∶= max{|𝐶𝑥𝑖,1 − 𝑥𝑖,2 +𝐷|, |𝐶𝑥𝑖,1 − 𝑥𝑖,2 +𝐷|, |𝐶𝑥𝑖,1 − 𝑥𝑖,2 +𝐷|,

|𝐶𝑥𝑖,1 − 𝑥𝑖,2 +𝐷|}.

ig. 2 presents an application of Model 1 to the non-separable syn-
hetic data set used in Fig. 1. We are able to see that while the first
isclassified data point is still misclassified, the second now lies on

he correct side of the hyperplane. From the analysis of the parameter
in Section A of the appendix, we can observe that the empirical

risk significantly decreases for each value of 𝐶, in comparison with
formulation (3). Furthermore, if the objective function is weighted in
favour of minimising structural risk (i.e., 𝐶 ≤ 0.4), then Model 1 also
presents improvements in the structural risk.

We present a further example application of Model 1 to a higher
dimension data set (i.e., in three dimensions) in Section B of the
appendix. In general, Model 1 is applicable to any dimension (i.e., 𝑛 ≥
1); however, the impact of the non-continuity may be more pronounced
in higher dimensions. As a further limitation, we remark that if 𝐵 > 2,
here is a risk that a hyperplane will consist only of data points of
ne class, which will lead to possible instances of overfitting. This can
e overcome by including a requirement that each hyperplane must
ontain at least one data point of each label, in order to ensure a
eparating hyperplane. Such an implementation is presented in Section
of the appendix, alongside a discussion.

.2. Model 2: Continuous piecewise linear hyperplanes

As a second contribution towards the presented framework, we
resent a model for SVM using PWL hyperplanes. While Model 1 is ap-
licable in higher dimensions, the remaining models we present require
ivariate data sets (i.e., 𝑛 = 2), due to the complexity in modelling
ontinuities in the hyperplane. We believe that efficient formulations
or modelling PWL functions in higher dimensions could be applied
ithin this SVM framework. However, to date, such formulations are
euristic in nature or make limiting assumptions on the shape of the
egments.

In order to ensure the (two-dimensional) PWL representation of
hyperplane, we require the model to enforce continuity between

djacent linear segments of the PWL function. This will ensure the
ata will be (ideally) separated by a single, continuous PWL function.
or this purpose, we present an extension of Model 1 which ensures
he continuity of the hyperplane. We note again that there is an order
equirement on the chosen variable (e.g., time).

To ensure continuity of adjacent segments, we use the modelling
ormulation that was introduced by Rebennack and Krasko (2020), who
resented a MILP model for PWL regression. We note that Kong and
aravelias (2020) presented a similar formulation for PWL regression;

owever, an analysis showed the former approach is preferable across
number of data sets (Warwicker & Rebennack, 2022). Consider two

djacent hyperplanes (𝑏 and 𝑏+1), represented by 𝑤𝑏,1𝑥1+𝑤𝑏,2𝑥2+𝑑𝑏 = 0
nd 𝑤 𝑥 +𝑤 𝑥 + 𝑑 = 0 respectively. These two hyperplanes
𝑏+1,1 1 𝑏+1,2 2 𝑏+1
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Fig. 2. An example of Model 1 with 𝐵 = 2 applied to a synthetic data set using non-separable data.
ntersect at the breakpoint 𝑥⋆1 , which is calculated as:

𝑥2 =
−𝑤𝑏,1𝑥⋆1 − 𝑑𝑏

𝑤𝑏,2
=

−𝑤𝑏+1,1𝑥⋆1 − 𝑑𝑏+1
𝑤𝑏+1,2

.

⟹ 𝑥⋆1 =

𝑑𝑏
𝑤𝑏,2

− 𝑑𝑏+1
𝑤𝑏+1,2

𝑤𝑏+1,1
𝑤𝑏+1,2

− 𝑤𝑏,1
𝑤𝑏,2

.

Clearly, we require 𝑤𝑏,2 ≠ 0, 𝑤𝑏+1,2 ≠ 0. The equation above
can be interpreted as follows. The numerator represents the change
in intercept between adjacent hyperplanes, while the denominator
represents the change in gradient. Let us denote the change in gradient
as 𝛥𝑔 . For the two data points either side of the breakpoint 𝑥⋆1 (i.e., 𝑥𝑖,1
nd 𝑥𝑖+1,1 for some 𝑖 ∈ [𝐼], where 𝑥𝑖,1 ≤ 𝑥⋆1 ≤ 𝑥𝑖+1,1), depending on the

sign of 𝛥𝑔 , we can multiply through by the denominator to attain the
following inequalities:

𝛥𝑔 > 0 ⟹ 𝛥𝑔𝑥𝑖,1 ≤
𝑑𝑏
𝑤𝑏,2

−
𝑑𝑏+1
𝑤𝑏+1,2

≤ 𝛥𝑔𝑥𝑖+1,1;

𝛥𝑔 < 0 ⟹ 𝛥𝑔𝑥𝑖,1 ≥
𝑑𝑏
𝑤𝑏,2

−
𝑑𝑏+1
𝑤𝑏+1,2

≥ 𝛥𝑔𝑥𝑖+1,1.

For the presented model, we assume that 𝑤𝑏,2 = 𝑤𝑏+1,2 > 0; that
is, we replace the variables 𝑤𝑏,2 with a single, strictly positive variable
𝑤2. Although this comes at some minor loss of generality, it simplifies
the modelling required for continuity between adjacent segments. In
particular, we can divide the above equations through by 𝑤2, and the
breakpoint location between adjacent hyperplanes is given by

𝑥⋆1 =
𝑑𝑏 − 𝑑𝑏+1

𝑤𝑏+1,1 −𝑤𝑏,1
,

and hence

𝛥𝑔 > 0 ⟹ (𝑤𝑏+1,1 −𝑤𝑏,1)𝑥𝑖,1 ≤ 𝑑𝑏 − 𝑑𝑏+1 ≤ (𝑤𝑏+1,1 −𝑤𝑏,1)𝑥𝑖+1,1;

𝛥𝑔 < 0 ⟹ (𝑤𝑏+1,1 −𝑤𝑏,1)𝑥𝑖,1 ≥ 𝑑𝑏 − 𝑑𝑏+1 ≥ (𝑤𝑏+1,1 −𝑤𝑏,1)𝑥𝑖+1,1.

In the former case (𝛥𝑔 > 0), the gradient increases between adjacent
segments (i.e., there is a convex turn); otherwise, the gradient decreases
between segments (we assume w.l.o.g. that the gradients do not co-
incide). Following from Rebennack and Krasko (2020), we introduce
a binary variable 𝛾𝑏 (∀𝑏 ∈ [𝐵 − 1], where 𝐵 ≥ 2 is the number of
breakpoints of the continuous PWL hyperplane) which indicates the
change in gradient between adjacent segments. The binary variable
is activated when adjacent data points are associated with adjacent
segments (i.e., when 𝛿𝑖,𝑏 = 𝛿𝑖+1,𝑏+1 = 1.)

We present Model 2 for the fitting of a separating PWL hyperplane
(denoted as PWL-SVM2) in formulation (8) , where we remove the
subscript on the weight variables for clarity of presentation. Note that
6

we consider a PWL hyperplane with 𝐵 − 1 connected segments (i.e., 𝐵
total breakpoints).

(PWL-SVM2)

min
( 𝐵
∑

𝑏=1
𝑊𝑏

)

+𝑤2 + 𝐶
𝐼
∑

𝑖=1
𝜉𝑖 (8a)

s.t. 𝑧𝑖(𝑤𝑏𝑥1 +𝑤2𝑥2 + 𝑑𝑏) ≥ 1

− 𝜉𝑖 −𝑀1
𝑖 (1 − 𝛿𝑖,𝑏) ∀𝑖 ∈ [𝐼]; 𝑏 ∈ [𝐵 − 1] (8b)

𝑤𝑏 ≤ 𝑊𝑏 ∀𝑏 ∈ [𝐵 − 1] (8c)

𝑤𝑏 ≥ −𝑊𝑏 ∀𝑏 ∈ [𝐵 − 1] (8d)

(7e)–(7h) (8e)

𝛿𝑖,𝑏 + 𝛿𝑖+1,𝑏+1 + 𝛾𝑏 − 2 ≤ 𝛿+𝑖,𝑏 ∀𝑖 ∈ [𝐼 − 1]; 𝑏 ∈ [𝐵 − 2] (8f)

𝛿𝑖,𝑏 + 𝛿𝑖+1,𝑏+1 + (1 − 𝛾𝑏) − 2 ≤ 𝛿−𝑖,𝑏 ∀𝑖 ∈ [𝐼 − 1]; 𝑏 ∈ [𝐵 − 2] (8g)
𝑑𝑏+1 − 𝑑𝑏 ≥ 𝑥𝑖(𝑤𝑏 −𝑤𝑏+1)

−𝑀2
𝑖 (1 − 𝛿+𝑖,𝑏) ∀𝑖 ∈ [𝐼 − 1]; 𝑏 ∈ [𝐵 − 2] (8h)

𝑑𝑏+1 − 𝑑𝑏 ≤ 𝑥𝑖+1(𝑤𝑏 −𝑤𝑏+1)

+𝑀2
𝑖+1(1 − 𝛿+𝑖,𝑏) ∀𝑖 ∈ [𝐼 − 1]; 𝑏 ∈ [𝐵 − 2] (8i)

𝑑𝑏+1 − 𝑑𝑏 ≤ 𝑥𝑖(𝑤𝑏 −𝑤𝑏+1)

+𝑀2
𝑖 (1 − 𝛿−𝑖,𝑏) ∀𝑖 ∈ [𝐼 − 1]; 𝑏 ∈ [𝐵 − 2] (8j)

𝑑𝑏+1 − 𝑑𝑏 ≥ 𝑥𝑖+1(𝑤𝑏 −𝑤𝑏+1)

−𝑀2
𝑖+1(1 − 𝛿−𝑖,𝑏) ∀𝑖 ∈ [𝐼 − 1]; 𝑏 ∈ [𝐵 − 2] (8k)

(7i)–(7j) (8l)

𝑊𝑏 ≥ 0 ∀𝑏 ∈ [𝐵 − 1] (8m)

𝑤𝑏 ∈ R; 𝑤2 ∈ R≠0 ∀𝑏 ∈ [𝐵 − 1] (8n)

𝛾𝑏 ∈ {0, 1} ∀𝑏 ∈ [𝐵 − 2] (8o)

𝛿+𝑖,𝑏, 𝛿
−
𝑖,𝑏 ∈ [0, 1] ∀𝑖 ∈ [𝐼 − 1]; 𝑏 ∈ [𝐵 − 1] (8p)

The objective function (8a) again sums the structural and empirical
risk. For the calculation of the structural risk, the second margin
variable 𝑤2 (which is fixed amongst all segments) only appears once.
This is to avoid the inclusion of extra segments contributing excess
value to the objective function, despite improving the accuracy of
the SVM. This places an increased importance on the first margin
variables. Including a penalty term in front of the second margin
variable 𝑤2 would provide some balance; however, we prefer to avoid
including another penalty term. Constraints (8b)–(8d) act similarly to
constraints (7b)–(7d); however, we are now limiting the models to two
dimensions.

The continuity of the hyperplanes is implicitly modelled through
constraints (8e)–(8k). Constraint (8e) brings in the same constraints

(7e)–(7h) from the previous model. However, the constraint (7e) now
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Fig. 3. An example of Model 2 with (a) 𝐵 = 2 and (b) 𝐵 = 4, applied to a synthetic data set.
ensures that each data point is only associated with one segment of
the PWL hyperplane, while the constraints (7f)–(7h) act similarly to
ensure the correct ordering. Constraints (8f)–(8g) set the value of the
binary variable 𝛾𝑏 to 0 or 1 between adjacent segments. This fixes the
value of one of the continuous variables 𝛿+𝑖,𝑏 or 𝛿−𝑖,𝑏 to 1; note these
variables are continuous, and are defined over [0, 1]. Depending on
which of the variables is set to 1, either constraints (8h)–(8i) or (8j)–
(8k) are activated, ensuring the continuity as described above. Finally,
constraints (8l)–(8p) present the domains of the variables.

Regarding the big-𝑀 terms 𝑀2
𝑖 , it is required that

𝑀2
𝑖 ≥ 𝐷 −𝐷 − max 𝑥𝑖(𝑤𝑏 −𝑤𝑏+1) = 𝐷 −𝐷 − 𝑥𝑖(𝑈1 − 𝐿1),

where 𝑈1 and 𝐿1 are respectively the upper and lower bounds for the
term 𝑤𝑏 (for the given feature). We refer to e.g., Baldomero-Naranjo
et al. (2020, 2021) for more information on how to accurately set these
bounds.

Fig. 3 shows how Model 2 models the synthetic data set from
previous illustrations. We see that while the data is inseparable for
linear hyperplanes, we can find more accurate classification using a
PWL hyperplane (see Fig. 3a). In Fig. 3b, the PWL hyperplane has
entirely eliminated the misclassification of the data points (i.e., 𝜉𝑖 =
0, ∀𝑖 ∈ [𝐼]), allowing the data to be separated. Since these two data
points are likely outliers, we note that the presented model is vulner-
able to overfitting the data if the number of segments is set too large.
We discuss implementing inbuilt outlier detection into the models in
Section 4 in order to minimise this risk.

3.3. Model 3: A general model for piecewise linear SVM

For a more general SVM model, we combine the ideas from the
previous two formulations. That is, we are looking to fit a given
number of continuous, PWL hyperplanes to separate the data. This
will overcome the issues of overfitting within the previous models,
and allow for more accurate classification. We will separate the data
with 𝐾 ≥ 1 hyperplanes, over which 𝐵 ≥ 2𝐾 breakpoints will be
distributed. Model 3, which we present in formulation (9) (and denote
as PWL-SVM3), uses similar modelling techniques to the model for
clusterwise PWL regression (which was presented by Warwicker and
Rebennack (2023b)), in order to model the discontinuities between
adjacent hyperplanes.

(PWL-SVM3)

min
( 𝐵
∑

𝑏=1
𝑊𝑏

)

+𝑤2 + 𝐶
𝐼
∑

𝑖=1
𝜉𝑖 (9a)

s.t. (8b)–(8d) (9b)

(7e)–(7h) (9c)
7

𝐵−𝐾−1
∑

𝑏=1
𝑍𝑏 = 𝐾 − 1 (9d)

𝛿𝑖,𝑏 + 𝛿𝑖+1,𝑏+1 + 𝛾𝑏

− 2 ≤ 𝛿+𝑖,𝑏 +𝑍𝑏 ∀ 𝑖 ∈ [𝐼 − 1]; 𝑏 ∈ [𝐵 −𝐾 − 1] (9e)
𝛿𝑖,𝑏 + 𝛿𝑖+1,𝑏+1 + (1 − 𝛾𝑏)

− 2 ≤ 𝛿−𝑖,𝑏 +𝑍𝑏 ∀ 𝑖 ∈ [𝐼 − 1]; 𝑏 ∈ [𝐵 −𝐾 − 1] (9f)

(8h)–(8k) (9g)

(7i)–(7j) (9h)

(8m)–(8p) (9i)

𝑍𝑏 ∈ {0, 1} ∀𝑏 ∈ [𝐵 −𝐾 − 1] (9j)

The objective function, the calculation of weights and errors, and
the assignment and ordering of the binary variables act similarly to the
previous models, and are covered by the terms (9a)–(9c).

Constraints (9d)–(9f) model the discontinuity between adjacent hy-
perplanes. Firstly, the binary variable 𝑍𝑏 is set to 1 if the breakpoint
𝑏 is the last breakpoint in its hyperplane; constraint (9d) ensures this
only occurs for the given number of hyperplanes. Then, if 𝑍𝑏 = 1,
constraints (9e) and (9f) can be ignored; otherwise, the are enacted and
the continuity is enforced between the current and adjacent segment
(via constraints (8h)–(8k), included by constraint (9g)).

Finally, the remaining constraints (9h)–(9j) provide the variable
domains.

We note that once the model has been run and the PWL segments
have been assigned, it is possible to re-run Model 2 on the newly
assigned separated data sets to re-fit the connected PWL hyperplanes.
This will then allow the user to assign different margins to each
hyperplane, further optimising for structural risk. However, we note
that this may come at a small loss of generality and optimality.

In Fig. 4, we present a comparison between Model 2 and Model 3 on
a new synthetic data set. Both models use three segments, yet Model 3
distributes the three segments between two hyperplanes, allowing for a
somewhat more natural separation. Data sets from time-series analysis
often exhibit such discontinuities, in which connected PWL hyperplanes
may not be sufficient to optimally separate and classify the data. We
again note the possible vulnerability of the presented formulation for
overfitting the data.

3.4. Comparison of formulations

Fig. 5 presents a flowchart representation of the three presented
models, detailing the relationships between subsequent formulations.

Further, in Table 1, we compare the three formulations we have pre-
sented in this section. For the sake of comparison, we consider all for-
mulations for bivariate data (i.e., we set 𝑛 = 2 for formulation (7)). Note
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Fig. 4. An example of (a) Model 2 and (b) Model 3 applied to a synthetic data set.
Fig. 5. Flowchart describing the relationship between the presented models.
Table 1
A comparison of Models 1–3.

Formulation Model 1 Model 2 Model 3

Constraints (7a)–(7k) (8a)–(8p) (9a)–(9j)
Nature of hyperplanes Multiple linear Piecewise linear Multiple piecewise linear
Nature of continuity Discontinuous Continuous Mixed
# Binary variables 𝐼 ⋅ 𝐵 (𝐼 + 1) ⋅ 𝐵 − 𝐼 − 2 (𝐼 + 2) ⋅ 𝐵 − 𝐼 −𝐾 − 3
# Continuous variables 4 ⋅ 𝐵 + 𝐼 (2𝐼 + 1) ⋅ 𝐵 − 𝐼 − 1 (2𝐼 + 1) ⋅ 𝐵 − 𝐼 − 1
# Constraints (2𝐼 + 3) ⋅ 𝐵 + 2 ⋅ 𝐼 − 1 (8𝐼 − 5) ⋅ 𝐵 − 11 ⋅ 𝐼 + 9 (8𝐼 − 5) ⋅ 𝐵 − 11 ⋅ 𝐼 + 10
that while 𝐵 represents the number of segments in formulation (7), it
represents the number of breakpoints in formulations (8)–(9).

Regarding the number of binary variables, Model 2 introduces 𝐵−2
binary variables to model the change in gradient between adjacent seg-
ments. Model 3 further introduces 𝐾 − 1 binary variables to model the
8

discontinuity; however, the removal of the continuity aspect between
adjacent segments makes the formulation easier to solve.

Regarding the application of the three models, they can each be
preferable in different situations. Models 1 and 3 contain disconti-
nuities, which means for future data points lying in these areas, the
models may have to be re-solved in order to provide more accurate
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hyperplanes. This also holds for data points lying outside the domain
of the pre-existing data set.

In general, we advise practitioners to perform a preliminary analysis
of the data set before selecting which of these models to apply. For
example, if there is a known discontinuity in the data which is to be
modelled, we advise implementing either Model 1 or Model 3, where
the latter may provide more information in more complex data sets.
Otherwise, we advise the use of Model 2, which can provide more
information than a standard model for linear SVM (e.g., compared to
formulation (3)).

4. SVM models within the unified framework for machine learn-
ing problems

The MILP models for SVM we have presented so far fit within the
same framework, in that they use binary variables to assign data points
to segments of hyperplanes, and model logical implications through
big- constraints. In particular, they share a common makeup with
the existing framework of MILP models for machine learning prob-
lems, which has recently been presented by Warwicker and Rebennack
(2023b). This framework has incorporated models for supervised and
unsupervised learning problems, such as regression and clustering (Park
et al., 2017; Rebennack & Krasko, 2020). The goal of these models is
to fit PWL-based regression functions to predict trends and groupings
based on unlabelled data. We now show how the SVM models presented
so far in this work can also fit within this framework, showcasing
its generality even for supervised learning approaches and for fitting
hyperplanes.

The idea of the unifying framework is that tailored methods can
be employed (based on the specific knowledge of the structure of the
models) to make them more robust, and to improve their efficiency.
In this section, we discuss how the structure of the presented SVM
models can be utilised in order to implement outlier detection. Addi-
tionally, we present the use of feature selection for the presented SVM
models, which can also be implemented as an improvement within the
framework.

For models within this framework, the combinatorial Benders de-
composition introduced by Codato and Fischetti (2006) can typically
be used to find speedups in the solution process. However, this is
dependent on the choice of the objective function. For the application
to SVM, typical objective functions render this approach ineffective. In
particular, any objective functions seeking to minimise the maximum
error, which typically benefit from CBD approaches, are ineffective at
measuring the empirical risk.

4.1. Outlier detection

The models we have presented in Models 1–3 are able to optimally
separate data that cannot be classified accurately within a linear SVM
model framework. However, in some cases, the MILP models can lead
to hyperplanes that are susceptible to overfitting the data. In order to
ensure the robustness of the models, we can implement inbuilt outlier
detection such that a fixed number of data points are excluded from
the calculation of the optimal hyperplane. Such outliers may be points
which have been mislabelled, or correctly labelled points which have
been subject to error in their measurements. If the outliers are not taken
into account, the models will provide hyperplanes that better fit the
non-outlier data points.

In terms of implementing outlier detection within MILP models,
Sudermann-Merx and Rebennack (2021) suggested the use of statisti-
cal models to identify sets of possible outlier points (based on their
relative position to the remaining data points), leading to efficient
approximations. Since the distance metric they considered is immune
to 𝑦-outliers, the outliers were likely located in extreme positions in
the 𝑥-axis. Hence, the idea of their approach is to reduce the number
9

of binary variables used in the MILP formulation. p
Recently, Warwicker and Rebennack (2023a) considered all data
points as possible outliers, allowing the model to exclude a given
number of data points from the calculation of the objective function.
This ensures an optimal removal of outlier points. A similar approach
has been implemented within SVM models with ramp loss by Brooks
(2011).

We present the following extension to Model 3, noting that a similar
extension can be implemented within the other models within the
presented framework, as well as the existing models from the literature
(i.e., formulations (1)–(6)). The binary variable 𝜌𝑖 states that the data
point 𝑖 ∈ [𝐼] is included in the model (i.e., it is not an outlier point),
and contributes towards the objective function. Let 𝑄 ≥ 0 be the
number of outlier points to be excluded by the model (this is set
by the user). Naturally, 𝑄 should not be set too large, which can
lead to loss of information. We recommend a trial-and-error based
approach if the number of outliers in the data is not known. Alter-
natively, implementing a (bounded) loss function within the objective
can be useful, although this may come at the cost of non-linearity (and
non-convexity) (Collobert et al., 2006).

(PWL-SVMO)

in
( 𝐵
∑

𝑏=1
𝑊𝑏

)

+𝑤2 + 𝐶
𝐼
∑

𝑖=1
𝜉𝑖 (10a)

s.t. 𝑧𝑖(𝑤𝑏𝑥1 +𝑤2𝑥2 + 𝑑𝑏) ≥ 1

− 𝜉𝑖 −𝑀1
𝑖 (2 − 𝛿𝑖,𝑏 − 𝜌𝑖) ∀𝑖 ∈ [𝐼]; 𝑏 ∈ [𝐵] (10b)

𝑤𝑏 ≤ 𝑊𝑏 ∀𝑏 ∈ [𝐵] (10c)

𝑤𝑏 ≥ −𝑊𝑏 ∀𝑏 ∈ [𝐵] (10d)
𝐼
∑

𝑖=1
𝜌𝑖 = 𝐼 −𝑄 (10e)

𝜌𝑖 ∈ {0, 1} ∀𝑖 ∈ [𝐼] (10f)

(9c)–(9j) (10g)

The objective function (10a) calculates the structural and empirical
isk as with the previous formulations. However, constraint (10b) is
ow only activated if the given data point is assigned to the segment,
nd is not an outlier point (i.e., 𝛿𝑖,𝑏 = 𝜌𝑖 = 1 for the given data
oint 𝑖 ∈ [𝐼] and segment 𝑏 ∈ [𝐵]). The absolute values of the
eight are calculated in constraint (10c)–(10d), while constraint (10e)
nsures only 𝑄 data points are considered as outliers. Constraint (10f)
ives the domain of the newly introduced binary variables, while the
emaining constraints match that of the model for which they are
pplied (e.g., formulation (9) in this instance).

Formulation (10) adds 𝐼 extra binary variables within the model,
hich increases its complexity. We can note that if we were able to rule
ut some data points as outliers (possibly by some heuristic method
r statistical analysis), then their value for 𝜌𝑖 could be fixed to 1,
educing the complexity of the model. However, this may sacrifice some
ccuracy and the resultant solution may not be optimal (with regards
o the given objective function).

In Fig. 6, we present an example of inbuilt outlier detection embed-
ed within Model 2, for the same synthetic data set presented in Fig. 3.
s the number of outliers increases, so does the quality of the model.
e see that if 𝑄 = 2, both outlier points are correctly identified (and

xcluded), ensuring an optimal separation (i.e., the empirical risk is 0)
nd the maximisation of the margin.

.2. Feature selection

We now discuss a simplified implementation of feature selection
hat is applicable for the three models we have presented. The im-

lementation we present can also be generalised to be applicable
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Fig. 6. An example of Model 2 applied to a synthetic data set with 𝐵 = 3 and (a) 𝑄 = 1, (b) 𝑄 = 2. The circled data points have been excluded from the calculation of the
objective function.
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to the previous models that have been presented within the frame-
work (i.e., clustering and regression problems Warwicker & Rebennack,
2023b).

Firstly, we note that the models we have presented (in particular,
Models 2 and 3) seek to separate labelled data in R2. Therefore, any
feature selection is limited to selecting only two features. Secondly,
there is a requirement (to preserve the continuity in the modelled
hyperplanes) that one of the features must be ordered. We suggest that
this feature can be fixed by the user, and is usually the most important
feature. For example, this can correspond to the time in the case of
time-series data.

The model we present is an extension of Model 3, and is based on
formulation (5) which was first presented by Maldonado et al. (2014).
We fix the first feature, and for each subsequent feature 𝑗 ∈ [𝐽 ], the
binary variable 𝑣𝑗 states whether or not that feature is selected by the
model. As opposed to formulation (5), we are assuming that the cost of
acquiring each feature is equal, and that we are selecting at most one.
This replaces the budget function. As with formulation (5), we also are
not aiming to explicitly minimise the structural risk, since we require
the weights to fall within a given interval [𝐿𝑗 , 𝑈𝑗 ] for each feature
𝑗 ∈ [𝐽 ]; this implicitly keeps the margins small.

(PWL-SVMFS)

min
𝐼
∑

𝑖=1
𝜉𝑖 (11a)

s.t. 𝑧𝑖

(

𝑤𝑏𝑥1 +

( 𝐽
∑

𝑗=1
𝑤𝑗𝑥2

)

+ 𝑑𝑏

)

≥ 1 − 𝜉𝑖 −𝑀1
𝑖 (1 − 𝛿𝑖,𝑏) ∀𝑖 ∈ [𝐼]; 𝑏 ∈ [𝐵] (11b)

𝐿𝑗𝑣𝑗 ≤ 𝑤𝑗 ≤ 𝑈𝑗𝑣𝑗 ∀𝑗 ∈ [𝐽 ] (11c)
𝐽
∑

𝑗=1
𝑣𝑗 = 1 (11d)

𝑣𝑗 ∈ {0, 1} ∀𝑗 ∈ [𝐽 ] (11e)

(9c)–(9j) (11f)

The objective function (11a) minimises the empirical risk, calcu-
lated as the sum of the errors. Constraint (11b) again sets the values
of the weights and calculates the errors in the case that the given data
point 𝑖 ∈ [𝐼] is assigned to the segment 𝑏 ∈ [𝐵]. Constraint (11c) only
allows the weights to be set as a non-zero value if the binary variable
𝑣𝑗 = 1 for the feature 𝑗 ∈ [𝐽 ], in which case they are limited to lie
within the range [𝐿𝑗 , 𝑈𝑗 ]. Constraint (11d) limits only one feature to be
selected for the given model, while constraint (11e) gives the domain of
10
the new binary variables. The remaining constraints again match those
of the model to which they are applied (e.g., formulation (9)).

We are further assuming that the weights for the features than can
be selected are non-negative. That is, we can set 𝐿𝑗 = 0 (or to a small
constant 𝜀 > 0) for all 𝑗 ∈ [𝐽 ], while setting 𝑈𝑗 to be arbitrarily large. Of
course, setting the value too large can lead to some loss of performance
in branch-and-bound settings. We again refer to Baldomero-Naranjo
et al. (2020, 2021) for more information on how to accurately set these
bounds.

Formulation (11) selects the feature that leads to a SVM with the best
fit for the given model (measured by the value of the given objective
function). That is, the model seeks to find the most relevant feature
that leads to an easily distinguishable split between the two sets of
labelled data, and hence the best accuracy for future predictions. By
fixing the value of 𝑣𝑗 to 1 for each feature 𝑗 ∈ [𝐽 ], the model can also
resent a ranked list of how valuable each feature is with regard to SVM
redictions.

Finally, we note that as with the models presented by Baldomero-
aranjo et al. (2021), feature selection and outlier detection can be

mplemented simultaneously within the models we present, as well as
hose presented in Warwicker and Rebennack (2023b).

. Experimental analysis

We now present a series of experimental comparisons of the formu-
ations presented so far, to highlight when each one is advantageous.

.1. Bivariate ad-hoc data sets

We firstly present a series of comparisons on ad-hoc data sets, which
ave been designed to showcase exactly when each of the formulations
erforms the best, in terms of solution quality and efficiency. In each
ase, a (possibly interrupted, piecewise) linear function is chosen, and
aussian noise is introduced. Aside from the fourth data set, the labels
re assigned based on proximity to the value of the function without
ny noise. For each data set, 50 data points are taken.

1. The first data set allows a linear SVM to be fitted;
2. The second data set allows a PWL SVM to be fitted, but is

non-separable for a linear SVM;
3. The third data set allows multiple PWL SVMs to be fitted, but is

prohibitive for a single linear or PWL SVM;
4. The fourth data set shows the same data as the second, but with

the labels randomly assigned. This is designed to see how the
models perform on random (and mislabelled) data.
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Fig. 7. Four ad-hoc data sets designed to showcase the advantages of the presented formulations. The blue dashed line indicates the function used as a basis for the given data
labelling.
Table 2
Reference values obtain by formulation (3) (Bradley & Mangasarian, 1998) for the
presented ad-hoc data sets.

Data set 1 2 3 4

OF value 5.49 62.18 138.00 127.82
Structural risk 5.49 0.18 0 0.06
Empirical risk 0 20.67 46.00 42.58
Runtime 0.01 0.01 0.01 0.01
% Misclassified 0 37.25 45.10 80.39

The four data sets are presented in Fig. 7.
We use 𝐶 = 3 throughout this subsection, as (from preliminary

experiments) this value ensures that when the data set is separable
(with regards to the chosen SVM model), the empirical risk is set to
0 (in the majority of cases), and the structural risk is minimised. In
particular, we firstly wish for the models to find an exact separation
(where this is possible) by minimising the empirical risk. Once the data
is able to be separated, we then wish the models to find the best fit by
minimising the structural risk. Hence, a large value of 𝐶 (i.e., greater
than 1) fits this. However, for real-world data, we expect the data to
be non-separable, so we recommend a value of 𝐶 ≤ 1 in this case.

Firstly, as a means of a benchmark comparison, we present the
runtime and risk values for the standard SVM model (formulation (3),
presented by Bradley and Mangasarian (1998)) in Table 2. This formu-
lation acts equivalently to Models 1–3 if the number of segments (and
clusters) are set to 1.

We see that while this formulation is able to find an optimal sep-
aration and minimise the empirical risk for data set (1), the empirical
risk for the remaining data sets is very high, leading to large objective
function values. Further, many data points are misclassified. This sug-
gests that linear SVMs may not provide the necessary information for
11
data sets that exhibit the patterns shown in data sets (2) and (3). In
particular, we note that the objective function when formulation (3)
is applied to data set (4) is lower than when applied to data set (3),
highlighting further the need for more accurate SVM models when the
data set exhibits a non-linear separation.

In Tables 3–4, we present the result for models (1)–(3) across the
four data sets. When solving for model (3), we are assuming two
clusters.

Regarding data set (1), we see that the three presented models
are able to find SVMs that separate the data. Model 1 is able to find
small improvements as the number of segments increases, while the
runtime also increases. Hence, there is a tradeoff between desired
performance and runtime. For a larger number of segments, there is a
risk of overfitting the available data, meaning potential loss of accuracy
for classifying future data points. Models 2 and 3, however, cannot
find improvements with an increased number of segments due to the
requirements on continuity, so there is no advantage to SVM models
with more segments in these cases.

For data set (2), we see that all models are able to separate the
data when at least four segments are used (implying an advantage
over single-segment models, such as formulation (3)). As the number of
segments increases beyond 4, there is a similar pattern as for data set
(1); that is, Model 1 can find small improvements in the structural risk,
while Models 2 and 3 are constrained by continuity. We further see
that Model 2 requires at least four segments to separate the data, while
Models 1 and 3 require only 3. Although the value of the objective
function is higher for Model 2, we note that the information provided
by the breakpoint locations is also valuable, as we can identify points
where the relationship between the given variables may change.

For data set (3), the advantage of the presented models over formu-
lation (3) is again evident. When Models 1 and 3 consist of at least four

segments, the empirical risk is small (a larger value for 𝐶 would result
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Table 3
Results of Models (1)–(3) applied to data sets (1) and (2).

Data set (1) Data set (2)

Segments Segments

2 3 4 5 6 7 2 3 4 5 6 7

Model 1 OF value 5.34 5.12 5.12 4.19 3.90 3.31 18.21 3.40 1.51 1.40 1.29 1.10
Structural risk 5.34 5.12 5.12 4.19 3.90 3.31 2.78 3.40 1.51 1.40 1.29 1.10
Empirical risk 0 0 0 0 0 0 5.14 0 0 0 0 0
Runtime 0.03 0.05 0.13 0.28 0.61 1.86 0.03 0.06 0.11 0.14 0.25 0.48
% Misclassified 0 0 0 0 0 0 7.84 0 0 0 0 0

Model 2 OF value 5.49 5.49 5.49 5.49 5.49 5.49 17.96 8.47 3.82 3.82 3.82 3.82
Structural risk 5.49 5.49 5.49 5.49 5.49 5.49 2.46 2.66 3.82 3.82 3.82 3.82
Empirical risk 0 0 0 0 0 0 5.17 1.94 0 0 0 0
Runtime 0.02 0.11 0.36 1.42 7.30 29.22 0.03 0.13 0.31 1.31 10.75 119.31
% Misclassified 0 0 0 0 0 0 5.88 3.92 0 0 0 0

Model 3 OF value 5.12 5.12 5.12 5.12 5.12 5.12 17.96 2.58 2.58 2.58 2.58 2.58
Structural risk 5.12 5.12 5.12 5.12 5.12 5.12 2.46 2.58 2.58 2.58 2.58 2.58
Empirical risk 0 0 0 0 0 0 5.17 0 0 0 0 0
Runtime 0.02 0.11 0.25 0.80 8.25 34.58 0.03 0.13 0.41 2.75 20.66 138.31
% Misclassified 0 0 0 0 0 0 7.84 0 0 0 0 0
Table 4
Results of Models (1)–(3) applied to data sets (3) and (4).

Data set (3) Data set (4)

Segments Segments

2 3 4 5 6 7 2 3 4 5 6 7

Model 1 OF value 86.62 58.07 16.79 11.09 4.27 3.44 96.09 74.36 56.41 44.08 32.68 21.68
Structural risk 2.62 11.81 10.79 6.29 4.27 3.44 0.42 0.59 2.46 2.77 3.37 4.37
Empirical risk 28.00 15.42 2.00 1.60 0 0 31.89 24.59 17.99 13.77 9.77 5.77
Runtime 0.02 0.05 0.09 0.17 0.42 1.28 0.05 0.06 0.17 0.38 0.56 2.75
% Misclassified 27.45 31.37 1.96 1.96 0 0 56.86 43.14 33.33 17.64 9.80 5.88

Model 2 OF value 128.00 121.15 76.41 39.90 37.75 34.93 121.05 105.18 94.13 86.73 80.13 76.50
Structural risk 2.00 1.94 12.31 28.42 20.55 19.90 0.11 2.23 4.13 6.33 8.13 8.25
Empirical risk 42.00 40.07 21.37 3.83 5.73 5.00 40.31 34.32 30.00 26.80 24.00 22.75
Runtime 0.05 0.36 0.83 5.14 38.05 778.19 0.05 0.38 3.89 16.89 121.28 1498.47
% Misclassified 41.18 72.55 43.14 13.73 15.69 15.69 56.86 58.82 45.10 45.10 41.18 37.25

Model 3 OF value 119.05 67.16 16.38 16.38 16.38 16.30 103.18 92.13 84.73 78.13 74.50 68.00
Structural risk 0.18 3.74 15.18 15.18 15.18 14.30 0.23 2.13 4.33 6.13 6.25 8.00
Empirical risk 39.63 21.14 0.40 0.40 0.40 0.67 34.32 30.00 26.80 24.00 22.75 20.00
Runtime 0.05 0.14 0.52 1.70 19.00 170.00 0.05 0.19 1.38 11.64 113.00 487.95
% Misclassified 27.45 41.18 3.92 1.96 1.96 1.96 56.86 49.02 43.13 31.37 23.53 21.57
in a value of 0), and we see that further segments can lead to small
improvements in both cases. In this case, Model 2 is prohibited by the
continuity requirements, and cannot effectively model the discontinuity
present in the data set. In such cases, the generality of Model 3 is
desirable, since it can effectively model the discontinuity, while also
providing breakpoint information for the two separated clusters of data.

We see for data set (4) that all models are ineffective, and lead to
large objective function values when there is no apparent pattern in
the data. Although the runtime required by Models 2 and 3 increases
quickly as the number of segments increases, the large objective func-
tion value is a desirable property of the models, since we can identify
that the given features lead to worse SVMs. Hence, if feature selection
was implemented, the formulations are able to identify which features
lead to poor SVM models such as those present in this data set, and
which may lead to better SVM models (i.e., any features with a that
lead to a resemblance with data sets (1)–(3)).

In general, we see that as the objective function improves, the
percentage of misclassified points decreases. On the few occasions
where this does not hold, we note that the models are not performing
well due to the limited number of linear segments used. Further, in
these cases we see the empirical risk decreases, meaning the magnitude
of the error of the misclassified points is decreasing overall.

5.2. Real world data sets

We now present a comparison of the three models on four real-
world data sets taken from the UCI Machine Learning Repository (Dua
12
Table 5
Real world data sets used for experimental comparison of SVM models. We consider
only non-categorical features.

Data set Test Fixed variable # Features Training set size

Adult Earnings (≤50k?) Age 3 73
Credit Credit rating Unknown 4 138
Heart Heart disease? Age 12 134
WBC Breast cancer? Unknown 25 122

& Graff, 2017), in order to assess their applicability, and show when
each can be useful from an analytical perspective. The data sets are
typically used in SVM applications for prediction, and exhibit a number
of the properties highlighted in the previous section. In this section
(and the analysis of outlier detection in Section 5.3), we firstly select,
for each data set, two features for the application of the three models
— we later analyse the effectiveness of the inbuilt feature selection
in Section 5.3. We present the full information about the data sets in
Table 5, and plot example applications of Model 2 with 4 breakpoints
in Fig. 8. Throughout this section, we use 𝐶 = 1.

Firstly, Table 6 shows the reference values obtained from the ap-
plication of formulation (3) to the four data sets. In each case, the
empirical risk is very large as the data is not necessarily linearly
separated. However, this formulation is very fast due to the lack of
binary variables. By implementing feature selection within formula-
tion (3), the model will seek to find features that portray the best linear
separation. If such a linear separation is unavailable, a PWL separation
may be preferable.
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Fig. 8. Four real-world data sets designed to showcase the advantages of the presented formulations. Each model is presented alongside a PWL SVM (from Model 2) with 4
breakpoints.
Table 6
Reference values obtain by formulation (3) (Bradley & Mangasarian, 1998) for the
presented real-world data sets.

Data set Adult Credit Heart WBC

OF value 30.95 112.50 46.07 30.88
Structural risk 0.06 0.45 0.18 1.19
Empirical risk 30.88 112.04 45.89 29.69
Runtime 0.01 0.01 0.01 0.01
% Misclassified 16.44 69.78 33.58 23.58

Tables 7–8 show the results of Models 1–3 applied to the four real-
orld data sets. Model 1 is the fastest model overall, and produces

he lowest objective function values. However, the non-connectivity
xhibited can be disadvantageous, since it will not be clear where the
rends change.

Regarding the performance of Model 2 on these data sets, the run-
imes quickly increase due to the complication of finding a continuous
WL function. In particular, for the Heart and WBC data sets, the
untime exceeds the time limit (86,400 s = 1 day) with only 6 segments.

Further, for these data sets, the decrease in objective function value is
small for increased number of segments. For the Adult data set, the
inclusion of more linear segments can lead to significant increases in
quality (e.g., comparing the model applied with 3 and 4 segments). We
note that after such an improvement, there is only minor improvement
seen from further segments; hence, we suggest that 4 segments is the
best in this case to find the right balance between solution quality and
potential overfitting.
13
Model 3 exhibits similar properties to Model 2 on the real-world
data sets with a slight increase in solution quality (measured by the
objective function value). Model 3 can be seen as midway between
Models 1 and 2, where there is a tradeoff between solution quality and
efficiency, and the information provided through continuity. Naturally,
enforcing continuity in all places can lead to overfitted models, so
requiring a small number of disconnected (PWL) hyperplanes in the
SVM model can be advantageous.

The models themselves require the number of segments and hyper-
planes to be given as input. We have seen that this selection can be
crucial with regard to the quality of the fit (measured by the objective
function value). While testing multiple settings for these parameters
can be prohibitive for large-scale data sets, we note that a preliminary
analysis of the data set may provide some indication as to the most
natural parameter settings. For example, heuristic approaches may
indicate when an extra segment or hyperplane leads to a large increase
in the quality of the solution.

5.3. Enhancements within the framework

We have seen from Sections 5.1–5.2 where the three models we
have presented can be applied most effectively, and the relative advan-
tages and disadvantages of each one. Nevertheless, the models can be
improved by taking advantage of their structure (Warwicker & Reben-
nack, 2023b); see Section 4 for more details. In particular, we will show
how outlier detection can be used to improve the quality of the model.
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Table 7
Results of Models 1–3 applied to the real-world data sets.

Adult Credit

Segments Segments

2 3 4 5 6 7 2 3 4 5 6 7

Model 1 OF value 16.69 14.19 10.64 8.64 7.14 5.74 80.78 73.38 69.37 66.17 63.37 60.17
Structural risk 1.54 3.04 3.69 4.58 3.08 3.07 0.68 0.82 0.85 1.66 0.85 1.66
Empirical risk 15.15 11.15 10.64 4.06 4.06 2.67 80.10 72.56 68.52 64.52 62.52 58.52
Runtime 0.03 0.11 0.25 0.53 0.58 1.20 0.06 0.28 4.41 21.64 119.06 685.84
% Misclassified 12.33 9.59 6.85 4.11 4.11 2.74 51.80 38.85 36.69 35.25 34.53 33.09

Model 2 OF value 20.50 20.02 17.71 17.28 15.35 14.56 97.97 94.01 93.14 90.96 90.49 ⋆
Structural risk 0.58 0.61 2.78 3.68 4.43 5.58 0.60 0.85 1.03 2.81 2.92 ⋆
Empirical risk 19.92 19.41 14.94 13.60 10.92 8.98 97.37 93.15 92.11 88.15 87.57 ⋆
Runtime 0.08 0.52 4.52 18.52 92.52 431.78 0.17 2.20 117.17 1233.69 85,203.90 ⋆
% Misclassified 24.66 24.66 19.18 17.81 14.70 12.33 69.06 65.47 64.75 61.87 57.97

Model 3 OF value 17.91 15.99 14.89 12.83 11.43 10.29 92.24 90.02 88.83 86.89 86.42 ⋆
Structural risk 1.18 1.85 2.09 3.83 4.72 5.21 0.48 3.11 1.48 5.35 5.47 ⋆
Empirical risk 16.73 14.13 12.81 9.00 6.71 5.08 91.76 86.91 87.35 81.55 80.96 ⋆
Runtime 0.05 0.27 1.38 8.63 41.80 130.86 0.06 1.42 23.11 589.28 49,942.73 ⋆
% Misclassified 13.70 10.96 9.59 6.85 5.48 5.48 53.62 51.45 52.17 47.10 45.65 ⋆
Table 8
Results of Models 1–3 applied to the real-world data sets (cont.).

Heart WBC

Segments Segments

2 3 4 5 6 7 2 3 4 5 6 7

Model 1 OF value 32.06 28.28 25.57 22.01 19.30 16.27 26.67 22.87 20.87 20.05 18.32 17.51
Structural risk 1.75 3.21 3.84 4.81 5.44 3.47 0.42 2.22 2.22 1.32 0.32 2.87
Empirical risk 30.31 25.07 21.74 17.20 13.87 12.8 26.25 20.64 18.64 18.74 18.00 14.64
Runtime 0.08 0.13 0.75 4.47 12.56 14.47 0.05 0.14 0.45 2.97 7.86 12.78
% Misclassified 21.64 16.42 14.18 11.19 8.96 8.21 17.07 11.38 10.57 10.57 7.32 8.94

Model 2 OF value 36.86 35.21 34.95 34.74 ⋆ ⋆ 28.94 28.93 28.92 28.92 28.91 ⋆
Structural risk 0.27 0.48 0.70 1.16 ⋆ ⋆ 0.06 0.17 0.19 0.19 0.18 ⋆
Empirical risk 36.59 34.73 34.25 33.57 ⋆ ⋆ 28.88 28.76 28.73 28.73 28.73 ⋆
Runtime 0.09 2.42 111.67 10,894.61 ⋆ ⋆ 0.11 1.11 18.89 570.67 20,959.16 ⋆
% Misclassified 25.37 23.88 23.13 23.13 ⋆ ⋆ 22.76 21.95 21.95 21.95 21.95 ⋆

Model 3 OF value 34.40 33.97 33.20 32.77 ⋆ ⋆ 26.54 26.46 26.46 26.46 26.44 ⋆
Structural risk 0.41 0.49 1.22 1.30 ⋆ ⋆ 0.12 0.16 0.16 0.16 0.15 ⋆
Empirical risk 34.00 33.48 31.98 31.47 ⋆ ⋆ 26.42 26.31 26.30 26.30 26.29 ⋆
Runtime 0.08 1.53 30.94 1504.59 ⋆ ⋆ 0.06 0.58 10.20 231.01 7301.59 ⋆
% Misclassified 24.63 22.39 20.90 20.90 ⋆ ⋆ 19.51 19.51 19.51 19.51 19.51 ⋆
Further, we show how feature selection can be implemented within the
models, leading to results generalisable to higher dimensional data sets.

Outlier detection
Section 4.1 highlighted how inbuilt outlier detection can be used to

improve the quality of the presented models. We show that although
the inclusion of outlier detection leads to slower models, the increase in
quality can be significant. Hence, there is a tradeoff between improved
models and efficiency; further, the inclusion of too many outlier points
can lead to models that overfit the given data. In Table 9, we implement
outlier detection within Model 1 to highlight this.

We see from Table 9 that the inclusion of inbuilt outlier detection
can have a significant impact on the quality of solutions. In particular,
there are cases where the removal of an outlier has a larger effect
on the objective function value than the inclusion of an extra linear
segment (e.g., Adult data set, 4 segment and 1 outlier vs. 5 segments
and 0 outliers). Of course, implementing inbuilt outlier detection leads
to much longer solve times, yet is particularly important in SVM
applications due to potential misclassifications (possibly due to human
error). In general, the removal of outliers leads to much more robust
models.

Feature selection
We have seen from Section 4.2 how feature selection can be im-

plemented within the models we have presented, using constructs
presented by e.g., Maldonado et al. (2014). The goal of feature selection
14
is to identify features that affect the model the most in order to improve
the quality of the model. In Table 10, we analyse how feature selection
affects the efficiency of Model 1. Note that in each case, one feature
is fixed, and we are assessing the effectiveness of choosing the second
feature.

We see from Table 10 that inbuilt feature selection can lead to
longer solve times, due to the inclusion of further binary variables
and more complex constraints. However, the effectiveness of the ap-
proach is clear, as the model essentially chooses the most relevant
features which lead to more informative hyperplanes. Any irrelevant
features can be ignored. This implementation can be generalised for
higher dimensions (especially for Model 1), where more features can
be selected.

With regards to simultaneous outlier detection and feature selec-
tion, we saw in experimental results implementing both methods that
the same features are selected, while the outlier detection leads to
improved objective function values (compared to those presented in
Table 10). That is, each of the two enhancements work to the benefit
of the model without disrupting each other. We only present their
applications individually in this current work to better highlight their
respective benefits.

5.4. Experimental comparison with the state-of-the-art

In order to benchmark the performance of the presented models, we
present an experimental comparison with the RL-FS-M model for SVM
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Table 9
Application of inbuilt outlier detection to Model 1.

Segments 2 3 4 5

Outliers 0 1 2 0 1 2 0 1 2 0 1 2

Adult

OF value 16.69 14.50 12.50 14.19 12.00 9.14 10.64 8.08 6.08 8.64 6.58 4.58
Structural risk 1.54 2.25 2.25 3.04 3.75 2.19 3.69 4.02 4.69 4.58 2.52 3.19
Empirical risk 15.15 12.25 10.25 11.15 8.25 6.95 10.64 4.06 1.39 4.06 4.06 1.39
Runtime 0.03 0.17 0.31 0.11 0.41 2.27 0.25 3.06 6.14 0.53 4.03 11.34
% Misclassified 12.33 9.59 8.22 9.59 6.85 6.85 6.85 4.11 1.37 4.11 4.11 1.37

Credit

OF value 80.78 78.61 76.41 73.38 71.11 68.91 69.37 66.97 63.89 66.17 63.68 ⋆
Structural risk 0.68 0.68 0.69 0.82 0.86 0.86 0.85 0.86 2.32 1.66 2.48 ⋆
Empirical risk 80.10 77.92 75.72 72.56 70.25 68.05 68.52 66.11 61.57 64.52 61.21 ⋆
Runtime 0.06 2.23 25.67 0.28 20.08 911.83 4.41 1022.63 25,868.98 21.64 11,944.20 ⋆
% Misclassified 51.80 50.36 49.64 38.85 36.69 35.97 36.69 35.97 35.25 35.25 34.53 ⋆

Heart

OF value 32.06 28.79 25.14 28.28 25.10 21.88 25.57 22.70 18.73 22.01 18.55 14.53
Structural risk 1.75 1.78 1.85 3.21 3.85 1.28 3.84 3.85 3.54 4.81 2.96 4.86
Empirical risk 30.31 27.01 23.29 25.07 21.24 20.60 21.74 18.84 15.19 17.20 15.59 9.67
Runtime 0.08 0.41 2.22 0.13 3.39 35.41 0.75 37.70 344.63 4.47 381.02 836.03
% Misclassified 21.64 19.40 14.93 16.42 13.43 14.18 14.18 11.94 9.70 11.19 11.19 5.22

WBC

OF value 26.67 22.90 18.87 22.87 20.87 18.81 20.87 18.87 16.87 20.05 18.05 15.52
Structural risk 0.42 1.93 2.27 2.22 2.22 2.25 2.22 2.22 2.22 1.32 1.32 2.90
Empirical risk 26.25 20.97 16.62 20.64 18.64 16.56 18.64 16.64 14.64 18.74 16.74 12.62
Runtime 0.05 0.28 1.91 0.14 2.36 21.08 0.45 11.20 241.47 2.97 156.45 935.64
% Misclassified 17.07 13.01 9.76 11.38 10.57 12.20 10.57 9.76 8.94 10.57 9.76 8.13
Table 10
Application of inbuilt feature selection to Model 1.

Segments Segments

2 3 4 5 6 7 2 3 4 5 6 7

Adult Credit

OF value 14.84 10.33 5.18 2.33 0.00 0.00 80.10 72.54 67.80 63.54 58.08 53.64
Runtime 0.03 0.11 0.11 0.19 0.16 0.30 0.08 0.38 3.06 12.69 43.64 158.58
% Misclassified 10.96 10.96 1.37 0 0 0 50.36 36.69 36.69 34.53 25.18 22.30

Heart WBC

OF value 30.31 24.48 19.73 15.28 11.70 6.75 19.32 15.70 10.24 6.00 4.00 0.74
Runtime 0.09 0.53 3.92 12.58 35.22 32.31 0.45 6.22 19.78 23.48 50.02 107.42
% Misclassified 21.64 13.43 11.94 10.45 5.22 2.24 12.20 8.94 4.88 2.44 1.63 1.63
which was recently presented by Baldomero-Naranjo et al. (2021). RL-
FS-M implements feature selection (via a budget constraint) into the
SVM model with ramp loss first presented by Brooks (2011), which
differentiates between data points falling into the margin and those that
are explicitly misclassified. The number of misclassified data points is
explicitly minimised in the objective function.

The models presented in this paper (i.e., Models 1–3) could also
be implemented within the RL-FS-M framework; this section shows
that even within a simpler model, the presented PWL enhancements
can lead to improvements in the efficiency and accuracy of the SVM
classifier.

Firstly, in Table 11 we apply RL-FS-M (using their suggested bound
tightening procedure, and setting the number of features to two) to
the ad-hoc data sets presented in Fig. 7. While the values for the
objective function, structural risk and empirical risk cannot be ex-
plicitly compared (with those from Tables 3–4), they provide a guide
for the relative performance of Models 1–3. The results suggest that
while RL-FS-M can perform well on data sets with obvious separability
(e.g., data set (1)) and on random data sets with no obvious patterns
(e.g., data set (4)), it is not as effective on non-linearly separable data
sets (e.g., data sets (2) and (3)). On these, Models 1–3 perform much
better, especially with a sufficient number of PWL segments (this is
partly due to the design of the data sets). The ability to capture non-
linear separations effectively highlights the potential for the presented
models.
15
Table 11
Reference values obtain by RL-FS-M (Baldomero-Naranjo et al., 2021) for the presented
ad-hoc data sets.

Data set 1 2 3 4

OF value 4.77 13.91 35.00 35.69
Structural risk 3.71 1.13 1.50 1.69
Empirical risk 1.06 12.78 33.50 34.00
Runtime 0.02 0.09 0.97 2.47
% Misclassified 0 7.84 31.37 33.33

Table 12 shows the performance of RL-FS-M to the real-world data
sets (where the number of features is again limited to 2). In this case,
we see the performance is dependent on the data set (as with the
presented models in Tables 7–8). For the Adult data set, Models 1–3
outperform RL-FS-M; we can see from Fig. 8 that this data set exhibits
a general non-linear separation, and is relatively sparse in one class.
The remaining data sets present a more linear separation, leading to
a slight advantage for RL-FS-M. However, with increasing number of
PWL segments, there is competitive performance from the presented
models. With the introduction of outlier detection (see Table 9), the
performance of Model 1 can significantly improve, leading to large
improvements over RL-FS-M. We expect similar large improvements
for Models 2–3. The presented models can be tuned (in the number
of segments, clusters and outliers) and also provide information as to
any change in the relationship between the variables (given by the
breakpoints); such information cannot be inferred from RL-FS-M.
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Table 12
Reference values obtain by RL-FS-M (Baldomero-Naranjo et al., 2021) for the presented
real-world data sets.

Data set Adult Credit Heart WBC

OF value 22.47 80.57 30.06 25.74
Structural risk 1.32 1.37 1.88 3.34
Empirical risk 21.15 79.20 28.19 22.40
Runtime 0.20 25.80 0.38 0.09
% Misclassified 12.33 23.02 8.96 6.50

Table 13
Reference values obtain by RL-FS-M (Baldomero-Naranjo et al., 2021) for the presented
real-world data sets (with all features available).

Data set Adult Credit Heart WBC

OF value 18.97 80.57 30.06 20.55
Runtime 0.28 985.60 39.06 8.61
% Misclassified 12.32 23.02 8.96 7.32

Finally, Table 13 presents results for RL-FS-M on the real-world
ata sets where there is a free choice of features. However, for a fair
omparison, we fix the first feature and allow the model to choose
second (i.e., we set a budget of 2). In general, when compared to
odel 1 (presented in Table 10), the performance is dependent on

he data set. However, given enough segments (i.e, increased model
omplexity), Model 1 is able to outperform RL-FS-M in each case.
gain, the inclusion of outlier detection in Model 1 leads to significant

ncreases in comparative performance. This further highlights that a
ybrid approach would lead to an improved model, and that applying
he improvements of outlier detection and feature selection into the
resented models, the performance significantly increases.

. Conclusion

Support vector machines (SVMs) are a powerful tool to classify
abelled data. We have presented a framework consisting of three
ixed-integer linear programming (MILP) models for finding appropri-

te SVMs for classified data in two dimensions, including a generalised
odel and a model which implements feature selection. Due to the use

f binary variables and logical implications modelled by big-𝑀 con-
straints, these models fit well into a recently presented MILP framework
for machine learning problems. As such, we can use tailored solution
methods to increase their robustness and improve their efficiency.

We have seen from an experimental analysis where each of the
presented models performs well, and the quality of information pro-
vided by each. The application of inbuilt outlier detection and feature
selection leads to more robust models which provide higher levels of
information, as well as showcasing when these models outperform the
state-of-the-art.

For future work, we wish to implement the presented models and
framework within modern SVM approaches, such as those presented
by Baldomero-Naranjo et al. (2021). We further aim to generalise the
models further into higher dimensions. This will involve the presenta-
tion of a MILP model for fitting triangulations to data, which will be
designed with the existing MILP framework in mind. We also wish to
present MILP models for SVM where the data can receive more labels;
a straightforward extension is to classify (say 𝑀 > 0) different labels
using 𝑀 SVMs, where each classifies based on a given label (i.e., does
it have this label or does it not?). Additionally, we aim to extend
the presented models for applications within semi-supervised learning,
where kernel-free methods typically perform well.
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