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ABSTRACT
The set of optimization problems in electric power systems engineering known collectively as Optimal
Power Flow (OPF) is one of themost practically important andwell-researched subfields of constrainednon-
linear optimization. OPF has enjoyed a rich history of research, innovation, and publication since its debut
five decades ago. Nevertheless, entry into OPF research is a daunting task for the uninitiated—both due to
the sheer volumeof literature andbecauseOPF’s ubiquitywithin the electric power systems community has
led authors to assume a great deal of prior knowledge that readers unfamiliar with electric power systems
may not possess. This article provides an introduction to OPF from an operations research perspective; it
describes a complete and concise basis of knowledge for beginningOPF research. The discussion is tailored
for the operations researcher who has experience with nonlinear optimization but little knowledge of elec-
trical engineering. Topics covered include power systems modeling, the power flow equations, typical OPF
formulations, and common OPF extensions.

1. Introduction

The set of optimization problems in electric power systems engi-
neering known collectively as Optimal Power Flow (OPF) is one
of the most practically important and well-researched subfields
of constrained nonlinear optimization. Carpentier (1962) intro-
duced OPF as an extension to the problem of optimal Economic
Dispatch (ED) of generation in electric power systems. Carpen-
tier’s key contribution was the inclusion of the electric power
flow equations in the ED formulation. Today, the defining fea-
ture of OPF remains the presence of the power flow equations in
the set of equality constraints.

OPF includes any optimization problem that seeks to opti-
mize the operation of an electric power system subject to the
physical constraints imposed by electrical laws and engineer-
ing limits. This general framework encompasses dozens of opti-
mization problems for power systems planning and operation
(Zhu, 2009; Zhang, 2010; Frank et al., 2012a). As illustrated
in Fig. 1, the optimization of power system operation typically
occurs via incremental planning: long-term planning proce-
dures make high-level decisions based on coarse system mod-
els, whereas short-term procedures refine earlier decisions using
detailed models but more limited decision spaces. OPF may be
applied to decision-making at nearly any planning horizon—
from long-term transmission network capacity planning to
minute-by-minute adjustment of real and reactive power dis-
patch (Wood and Wollenberg, 1996; Glover et al., 2008; Zhu,
2009).

To date, thousands of articles and hundreds of textbook
entries have been written about OPF. In its maturation over
the past five decades, OPF has served as a practical prov-
ing ground for many popular nonlinear optimization algo-
rithms, including gradientmethods (Dommel andTinney, 1968;
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Peschon et al., 1972; Alsac and Stott, 1974), Newton-type meth-
ods (Sun et al., 1984), sequential linear programming (Stott and
Hobson, 1978; Alsac et al., 1990), sequential quadratic program-
ming (Burchett et al., 1982), both linear and nonlinear interior
point methods (Vargas et al., 1993; Granville, 1994; Torres and
Quintana, 1998), and semi-definite programming (Lavaei and
Low, 2012; Low, 2013). These algorithmic approaches, among
others, are reviewed in several surveys (Huneault and Galiana,
1991; Momoh et al., 1999a, 1999b; Zhang et al., 2007; Zhang,
2010; Bienstock, 2013), including one recently published by the
authors Frank et al. (2012a, 2012b).

Although OPF spans operations research and electrical engi-
neering, the accessibility of the OPF literature skews heavily
toward the electrical engineering community. OPF has become
sufficiently familiar within the electric power systems commu-
nity that the recent literature, including survey papers, assumes
a great deal of prior knowledge on the part of the reader.
Few papers even include a full OPF formulation, much less
explain the particulars of the objective function or constraints.
Even introductory textbooks (Wood and Wollenberg, 1996;
Rau, 2003b; Zhu, 2009) require a strong background in power
systems analysis, specifically regarding the form, construction,
and solution of the electric power flow equations. Although
many electrical engineers have this prior knowledge, an oper-
ations researcher likely will not. We believe that this accessibil-
ity gap has been detrimental to the involvement of the opera-
tions research community in OPF research; our impression is
that most OPF articles continue to be published in engineering
journals by electrical engineers.

What is missing in the literature—and what we provide
in this introductory article—is a detailed introduction to
the OPF problem from an operations research perspective.

Copyright ©  “IIE”
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Figure . Optimization and control procedures for incremental planning of power system operation. Bold text indicates procedures that incorporate variants of optimal
power flow.

Existing review articles and surveys (Zhang and Tolbert, 2005;
Zhang et al., 2007; Bienstock, 2013), including the authors’
recent survey Frank et al. (2012a, 2012b), focus heavily on opti-
mization theory and tailored OPF solution algorithms. In con-
trast, this article emphasizes the electrical engineering theory
and mechanics of the OPF formulation. The goal of this arti-
cle is to provide a bridge between OPF theory and practice: in it
we outline the tool set required to understand, formulate, ana-
lyze, and ultimately solve a typical OPF problem. Therefore, we
address many topics given little attention in other introductory
materials, including the construction of the admittance matrix
for electrical power flow, treatment of advanced controls such
as phase-shifting and tap-changing transformers, a qualitative
comparison of the various forms of the electric power flow equa-
tions, and various practical considerations, such as the use of the
per unit system.

As we have written this article for the operations researcher,
we assume that the reader has significant experience with non-
linear optimization and advanced mathematical concepts but
little background in electrical engineering. Specifically, this arti-
cle requires a foundational understanding of

� linear algebra (Greenberg, 1998);
� complex number theory (Greenberg, 1998; Freitag and
Busam, 2009);

� analysis of differential equations in the frequency domain
(Greenberg, 1998); and

� linear and nonlinear optimization theory and application
(Rardin, 1997; Nocedal and Wright, 2006).

We expect that readers may not possess a working knowl-
edge of electrical circuit theory; we therefore provide a brief

introduction in Appendix B and recommend O’Malley (2011)
for further reading. Readers interested in the technical details
of electric power flow should also consult a good power systems
text such asGlover et al. (2008) orWood andWollenberg (1996).

We begin in Section 2 with a description of power systems
models, including the classic formulation of the OPF prob-
lem. Section 3 surveys some common applications of OPF and
includes full formulations for several of the decision processes
shown in Fig. 1. Section 4 describes the bus admittance matrix,
which is the foundation of the power flow equations. Section
5 reviews the various forms of the power flow equations, with
an emphasis on describing their relative advantages and dis-
advantages. Building on the power flow equations, Section 6
introduces OPF solution methods and practical considerations.
Section 7 then provides a worked example of a classic OPF for-
mulation. Finally, Section 8 concludes the article.

We also include four Appendices that provide supplemen-
tal information regarding electric power systems modeling and
analysis. Appendix A documents the notation used throughout
the article, Appendix B reviews fundamental electric power sys-
tem concepts relevant to OPF, Appendix C summarizes the per-
unit system, and Appendix D describes common formats for the
exchange of power system data.

Different readers may have different goals in reviewing this
article. We recommend that all readers start with the Intro-
duction and Section 2. Readers interested only in a brief OPF
overview can subsequently read Sections 3 and 6.2 and safely
skip the detailed derivations in other sections. Conversely, read-
ers attempting to implement or test an OPF solution algo-
rithm should read Sections 4 to 7 in detail. Readers interested
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primarily in understanding linear approximations for the OPF
problem should review Section 5 and in particular Section 5.3,
which discusses DC power flow.

2. Modeling of power systems

In this section, we introduce the classic network model for an
electric power system and describe conventional power flow
and OPF. The development requires some basic knowledge of
electrical circuit theory, the frequency domain (phasor) repre-
sentation of electrical quantities, and the concept of complex
electric power. Readers unfamiliar with these topics should con-
sult Appendix B first for a brief overview.

2.1. Notation

Throughout this article, italic roman font (A) indicates a vari-
able or parameter, bold roman font (A) indicates a set, and a tilde
over a symbol (ã) indicates a phasor quantity (complex number).
Letter case does not differentiate variables from parameters; a
given quantity may be a variable in some cases and a parameter
in others. Symbolic superscripts are used as qualifiers to differ-
entiate similar variables, whereas numeric superscripts indicate
mathematical operations. For example, the superscript L differ-
entiates load power PL from net power P, but P2 indicates (net)
power squared. Where applicable, electrical units are specified
using regular roman font. The unit for a quantity follows the
numeric quantity and is separated by a space; for example, 120 V
indicates 120 Volts.

We use the following general notation for optimization
formulations:

u vector of control variables (independent decision
variables);

x vector or state variables (dependent decision variables);
f (u, x) objective function (scalar);
g(u, x) vector function of equality constraints;
h(u, x) vector function of inequality constraints.

In order to remain consistent with the existing body of OPF
literature, this article uses notation that follows electrical engi-
neering conventions rather than those of the operations research
community. In particular, the symbols e and j represent mathe-
matical constants:

e Euler’s number (the base of the natural logarithm),
e ≈ 2.71828; and

j the imaginary unit or 90° operator, j = √−1.
This differs from the use of e as the unit vector and j as an index
as is common in operations research literature. Appendix A
includes a full listing of the notation used in this article, includ-
ing relevant commentary on other notational differences and
a listing of electrical engineering units used in power systems
analysis.

2.2. Network representation

Electric power systems may be modeled as a network of elec-
trical buses (nodes) interconnected by branches (arcs or edges)
that represent transmission lines, cables, transformers, and sim-
ilar power systems equipment. Buses represent physical points
of interconnection among power systems equipment, whereas

branches represent paths for the flow of electrical current. The
purpose of an electric power system is to transfer electrical
energy from generation (supply) buses to load (demand) buses
elsewhere in the network.

Buses are referenced by node with index i ∈ N, whereas
branches are referenced as arcs between nodes (i, k) ∈ L, where
i, k ∈ N. The undirected graph (N, L) therefore describes the
connectivity of the electrical network. The number of buses and
branches are N = |N| and L = |L|, respectively.

Each system bus i has an associated voltage Ṽi, which is
measured with respect to the system reference (typically Earth
ground). When connected via the branch network, or “grid,”
these voltages induce current in each branch in proportion to the
branch admittance. (Admittance, which is ameasure of how eas-
ily a conductor permits the flowof electrical current, is described
in Appendix B.) The most common and concise mathematical
description of this phenomenon is the matrix equation

Ĩ = ỸṼ , (1)

in which Ṽ = (Ṽ1, . . . , ṼN ) is an N-dimensional vector of
phasor voltages at each system bus, Ĩ = (̃I1, . . . , ĨN ) is an N-
dimensional vector of phasor currents injected into the network
at each system bus, and

Ỹ =

⎛⎜⎜⎝
Ỹ11 . . . Ỹ1N
...

. . .
...

ỸN1 . . . ỸNN

⎞⎟⎟⎠
is theN × N complex bus admittancematrix, which is described
in detail in Section 4. At each bus i, injection current Ĩi repre-
sents the net current supplied to the network: generation (sup-
ply) minus load (demand). In this framework, voltages Ṽ are
state variables that fully characterize system power flow for a
given matrix Ỹ .

It is more convenient to work with power flows than cur-
rents because (i) injected powers are independent of system
voltage angle whereas injected currents are not and (ii) work-
ing directly with power allows straightforward computation of
required electrical energy via integration with respect to time.
Therefore, power systems engineers transform Equation (1) by
applying the definition of complex power S = Ṽ Ĩ∗ to each side
of the matrix equation, as described in Appendix B.4. (Here and
elsewhere in this article, the symbol ∗ denotes complex conjuga-
tion rather than an optimal value; this use is typical in electrical
engineering.) The result is the complex power flow equation

S = Ṽ ◦ (ỸṼ )∗ , (2)

in which S = P + jQ is a vector of complex power injections at
each bus and ◦ denotes element-wise vector multiplication. At
each bus i, the total injected power is the difference between the
generation SGi and the load SLi

Si = SGi − SLi ⇔ Pi + jQi = (
PG
i − PL

i
)+ j

(
QG

i − QL
i
)
.

For numerical analysis or optimization, Equation (2) may be
decomposed into a set of equivalent, real-valued, nonlinear
power flow equations by separating its real and imaginary com-
ponents (see Section 5).
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2.3. Conventional power flow

The conventional Power Flow (PF) problem seeks a determin-
istic solution to network Equation (2) using numerical analy-
sis techniques. Conventional PF is a feasibility problem: there
is no objective function. Rather, the goal is to compute all sys-
tem bus voltages and power injections. Here, we summarize the
PF problem with polar voltage coordinates, which is the classic
representation.

If each bus voltage is represented in polar form with magni-
tude V and phase angle δ, then Equation (2) decomposes into
the set of power flow equations

Pi (V, δ) = PG
i − PL

i ∀ i ∈ N, (3)

Qi (V, δ) = QG
i − QL

i ∀ i ∈ N, (4)

in which net real and reactive power injections Pi and Qi are
trigonometric functions of the system voltages. (See Section 5
for the fully expanded equations.) Each systembus has four vari-
ables (net real power injection Pi, net reactive power injection
Qi, voltage magnitudeVi, and voltage angle δi) and is governed
by two equations. Thus, a deterministic solution to the conven-
tional PF problem requires fixing the values of two out of four
variables at each bus.

In conventional PF, all system buses are assigned to one of
three bus types.

Slack Bus: At the slack bus, or swing bus, the voltage magnitude
and angle are fixed and the power injections are free. The pur-
pose of the slack bus is twofold. First, it provides a voltage
reference (typically V = 1.0 p.u. and δ = 0◦) such that the
remaining bus voltages are uniquely determined; we explain
the per unit system “p.u.” in Appendix C. Second, as it is the
only bus at which real power is free to vary, the slack bus is
required to ensure that the power flow equations have a fea-
sible solution. There is only one slack bus in a power system
model.

Load Bus: At a load bus, or “PQ” bus, the power injections are
fixed while the voltage magnitude and angle are free. There
are a fixed number of PQ buses in the system; the symbolM
denotes this number.

Voltage-Controlled Bus: At a voltage-controlled bus, or “PV”
bus, the real power injection and voltage magnitude are fixed
while the reactive power injection and the voltage angle are
free. (This corresponds to allowing a local source of reactive
power to regulate the voltage to a desired setpoint.) There are
N − M − 1 PV buses in the system.

Assigning buses in this way establishes an equal number of
equations and unknowns. Table 1 summarizes the known and
unknown quantities for each of the bus types.

Once all voltage magnitudes and angles in the system have
been computed, the remaining power injections are trivial to

Table . Power system bus types and characteristics for conventional power flow.

Bus type Slack PQ PV

Number of buses in system  M N − M − 1
Known quantities δ,V P,Q P,V
Unknown quantities P,Q δ,V δ,Q
Number of equations in conventional PF   

evaluate via Equations (3) and (4). Solving the PF therefore
requires determining N − 1 voltage angles (corresponding to
the PQ and PV buses) andM voltage magnitudes (correspond-
ing to the PQ buses only). This is done by solving N + M − 1
simultaneous nonlinear equations with known right-hand side
values. This equation set consists of the real power injection
Equation (3) at each PQ and PV bus and the reactive power
injectionEquation (4) at eachPQbus. Section 6.1 discusses solu-
tion methods for these equations.

Even though the power flow equations are nonlinear, there
exists only one physically meaningful solution for most power
systems models given an equal number of equations and
unknowns. Although other mathematically valid solutions
sometimes exist, they have no realistic physical interpretation.
(An example would be any solution that returns a negative volt-
age magnitude, as magnitudes are by definition non-negative.)
Hence, in practice, conventional PF is an exactly determined
problem.

2.4. OPF

OPF combines an objective function with the PF Equations (3)
and (4) to form an optimization problem. The presence of the
PF equations is the feature that distinguishes OPF from other
classes of power systems problems, such as classic ED, Unit
Commitment (UC), and market-clearing problems.

Most OPF variants build upon the classic formulation of
Carpentier (1962) and Dommel and Tinney (1968). The clas-
sic formulation is an extension of classic ED: its objective is to
minimize the total cost of electricity generation while maintain-
ing the electric power system within safe operating limits. The
power system is modeled as a set of buses N connected by a set
of branches L, with controllable generators located at a subset
G ⊆ N of the system buses. The operating cost of each gener-
ator is a (typically quadratic) function of its real output power:
Ci(PG

i ). The objective is tominimize the total cost of generation.
The classic form of the formulation is

min
∑
i∈G

Ci
(
PG
i
)
, (5)

s.t. Pi (V, δ) = PG
i − PL

i ∀ i ∈ N, (6)

Qi (V, δ) = QG
i − QL

i ∀ i ∈ N, (7)

PG,min
i ≤ PG

i ≤ PG,max
i ∀ i ∈ G, (8)

QG,min
i ≤ QG

i ≤ QG,max
i ∀ i ∈ G, (9)

Vmin
i ≤ Vi ≤ Vmax

i ∀ i ∈ N, (10)

δmin
i ≤ δi ≤ δmax

i ∀ i ∈ N. (11)

Constraints (6) and (7) are the PF equations in polar form. The
remaining constraints represent bounds on the system voltages
and powers. Typically, load real and reactive power are fixed
while generator real and reactive power are control variables
subject to minimum and maximum limits. The voltage magni-
tude and angle at the system slack bus (by convention, bus 1) are
also fixed, usually to Ṽ1 = 1.0∠0.
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Early methods partition the decision variables into a set of
control variables u (typically the controllable bus power injec-
tions) and a set of state variables x (the voltage magnitudes and
angles; Dommel and Tinney, 1968; Burchett et al, 1982). Under
this framework, the vector of control variables (independent
decision variables) for the classic formulation is

u = (
PG
i:i∈G,QG

i:i∈G
)

and the vector of state variables (dependent decision variables)
is

x = (δ2, . . . , δN,V2, . . . ,VN ) .

Although not considered in the earliest papers, more recent
OPF formulations may include branch current limits and, if
applicable, box constraints related to the operational limits of PF
control devices. These and other side constraints are discussed
in Section 5.5.

2.5. Challenges

Power systems have evolved significantly since the early days of
OPF, in particular through the addition of advanced controls.
Modern grids include control devices that are difficult to incor-
porate into OPF formulations: on-load tap changers (Acha et al.,
2000), phase shifters (Momoh et al., 2001), series and shunt
capacitors (Momoh et al., 1997), and flexible AC transmission
systems devices (Xiao et al., 2002). As such controls exert a
large influence on system power flows, they cannot be neglected
in practical OPF formulations. Unfortunately, many academic
papers neglect the modeling of advanced controls and treat only
the classic formulation, limiting their application in a practical
setting.

Nevertheless, some researchers have dedicated considerable
effort to developing accurate but efficient models for advanced
controls (Acha et al., 2000; Lehmköster, 2002; Xiao et al., 2002).
Most such models employ auxiliary power injections at certain
systembuses coupledwith side constraints to enforce power bal-
ance. However, even a modest number of such constraints can
significantly increase OPF problem complexity (Azevedo et al.,
2010). Many devices also have discrete control settings, which if
accurately modeled create a large and intractable Mixed-Integer
Nonlinear Programming (MINLP) problem (Soler et al., 2012).
A typical approach is to model the control space as contin-
uous and round the optimal solution to the nearest discrete
value (Adibi et al., 2003), but this heuristic can yield suboptimal
or infeasible solutions (Capitanescu and Wehenkel, 2010; Soler
et al., 2012).

Even without variable phase angles, variable tap ratios, or
branch current limits, the classic OPF formulation is diffi-
cult to solve. The power flow constraints (6) and (7) are both
nonlinear and non-convex, and the presence of trigonomet-
ric functions complicates the construction of approximations.
Moreover, becauseOPF is tightly constrained, local optima often
provide only incremental improvements with respect to the sys-
tem starting point. Thus, the optimum may only improve a few
percent upon the base case, as illustrated by numerical results in

Alsac and Stott (1974), Sun et al. (1984), Granville (1994), and
many other papers.

For these reasons, OPF problems have historically been
solved using tailored algorithms rather than general-purpose
solvers. Although effective for research problems, few such algo-
rithms are considered sufficiently reliable for industrial deploy-
ment. In particular, solution methods for both conventional
PF and OPF become significantly less reliable when the power
system is under stress (Bienstock, 2013). Algorithm robust-
ness is also a key concern: small changes in the power system
state may lead to the loss of local feasibility (a critical issue for
local nonlinear solvers) or large changes in the optimal solution
(Almeida and Galiana, 1996). In addition, real power system
models include thousands of buses; problems of this size present
computational challenges for state-of-the-art nonlinear solvers.

In actual practice, almost all practical OPF problems are
solved using a linear (DC) power flow approximation (Section
5.3; Rau, 2003a; Stott et al., 2009). The results of the DC-OPF are
then used either for contingency analysis with conventional AC-
PF or, less commonly, to initialize, or “warm start,” a nonlinear
OPF (AC-OPF). Unfortunately, the DC formulation can exhibit
significant inaccuracy, particularly for heavily loaded transmis-
sion lines (Momoh et al., 1997; Stott et al., 2009). Nor is the DC
model applicable to reactive power dispatch. The search for reli-
able AC-OPF solutionmethods therefore remains extremely rel-
evant to the power systems community.

3. Applications of OPF

In addition to the classic ED formulation, several other OPF
variants are common in both industry and research. These
include Security-Constrained Economic Dispatch (SCED),
Security-Constrained Unit Commitment (SCUC), Optimal
Reactive Power Flow (ORPF), and Reactive Power Planning
(RPP).

3.1. Security-Constrained Economic Dispatch

SCED, sometimes referred to as security-constrained optimal
power flow, is an OPF formulation that includes power system
contingency constraints (Alsac and Stott, 1974). A contingency
is defined as an event that removes one or more generators or
transmission lines from the power system, increasing the stress
on the remaining network. SCED seeks an optimal solution that
remains feasible under any of a pre-specified set of likely con-
tingency events. SCED is a restriction of the classic OPF for-
mulation: for the same objective function, the optimal solution
to SCED will be no better than the optimal solution without
considering contingencies. The justification for the restriction
is that SCED mitigates the risk of a system failure (blackout)
should one of the contingencies occur.

SCED formulations typically have the same objective func-
tion and decision variables u as the classic formulation, except
that the slack bus real and reactive power are considered state
variables, as they must be allowed to change in order for the sys-
tem to remain feasible during each contingency.However, SCED
introduces NC additional sets of state variables x and accompa-
nying sets of power flow constraints, where NC is the number of
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contingencies. SCED can be expressed in a general way as

min f (u, x0),
s.t. g0(u, x0) = 0,

h0(u, x0) ≤ 0,
gc(u, xc) = 0 ∀ c ∈ C,

hc(u, xc) ≤ 0 ∀ c ∈ C, (12)

where C = {1, . . . ,NC} is the set of contingencies to consider.
Each contingency has a distinct admittance matrix Ỹc, typically
with less connectivity than the original system. Apart from the
contingency index, f , g, and h are defined as the objective func-
tion, equality constraints, and inequality constraints in the clas-
sic OPF formulation (5) to (11), respectively.

For each contingency c ∈ C, the post-contingency power
flowmust remain feasible for the original decision variables u:

(i) the power flow equations must have a solution;
(ii) the contingency state variables xc must remain within

limits; and
(iii) any inequality constraints, such as branch flow limits,

must be satisfied.
One very common contingency set considers independently the
loss of each generator and each non-radial transmission line.
The resulting SCED solution is said to be N − 1 reliable, since
for every possible single element contingency c the network has
a feasible solution xc given the optimal dispatch decisions u.

Typically, the limits on the contingency-dependent state vari-
ables xc and other functional inequality constraints are relaxed
for the contingency cases compared to the base case. For
example, system voltages are allowed to dip further during an
emergency than under normal operating conditions. The relax-
ation of system limits is justified because operation under a
contingency is temporary: when a contingency occurs, opera-
tors immediately begin re-configuring the system to return all
branches and buses to normal operating limits. For the same rea-
son, the SCED objective function considers only the base case:
contingency cases are improbable and transient and do not con-
tribute to the expected cost function.

SCED has interesting connections to other areas of optimiza-
tion. The motivation for SCED is theoretically similar to that of
RobustOptimization (RO) (Bertsimas et al., 2011), althoughRO
typically addresses continuous uncertain parameters rather than
discrete scenarios. Additionally, because the constraints are sep-
arable for a fixed u, SCED lends itself well to parallelization and
decomposition algorithms (Qiu et al., 2005).

3.2. Security-Constrained Unit Commitment

In electric power systems operation, unit commitment (UC)
refers to the scheduling of generating units such that total oper-
ating cost is minimized. UC differs from ED in that it operates
across multiple time periods and schedules the on–off status of
each generator in addition to its power output. UCmust address
generator startup and shutdown time and costs, limits on gen-
erator cycling, ramp rate limits, reserve margin requirements,
and other scheduling constraints. UC is a large-scale, multi-
period MINLP. Many UC formulations relax certain aspects of

the problem in order to obtain a mixed-integer linear program
instead—for instance, by using linearized cost functions.

If the power flow equations are added to the UC problem, the
formulation becomes SCUC. In SCUC, a power flow is applied
at each time period to ensure that the scheduled generation sat-
isfies not only the scheduling constraints but also system volt-
age and branch flow limits. In other words, SCUC ensures that
the UC algorithm produces a generation schedule that can be
physically realized in the power system. Due to its complexity,
research on SCUC has accelerated only with the advent of faster
computing capabilities and algorithmic advancements.

In SCUC, we introduce a time index t ∈ T and a set of binary
control variables wit to the OPF formulation. Each wit indicates
whether or not generator i is committed for time period t . The
modified formulation becomes

min
∑
t∈T

∑
i∈G

(
witCi

(
PG
it
)+CSU

i wit
(
1 − wi,t−1

)
+CSD

i (1 − wit )wi,t−1

)
, (13)

s.t. Pit (Vt , δt , ϕt ,Tt ) = PG
it − PL

it ∀ i ∈ N,∀ t ∈ T,

(14)

Qit (Vt , δt , ϕt ,Tt ) = QG
it − QL

it ∀ i ∈ N,∀ t ∈ T,

(15)

witPG,min
i ≤ PG

it ≤ witPG,max
i ∀ i ∈ G,∀ t ∈ T,

(16)

witQG,min
i ≤ QG

it ≤ witQG,max
i ∀ i ∈ G,∀ t ∈ T,

(17)

Vmin
i ≤ Vit ≤ Vmax

i ∀ i ∈ N,∀ t ∈ T, (18)

δmin
i ≤ δit ≤ δmax

i ∀ i ∈ N,∀ t ∈ T, (19)

ϕmin
ik ≤ ϕikt ≤ ϕmax

ik ∀ ik ∈ H,∀ t ∈ T, (20)

Tmin
ik ≤ Tikt ≤ Tmax

ik ∀ ik ∈ K,∀ t ∈ T, (21)

Iikt (Vt , δt ) ≤ Imax
ik ∀ ik ∈ L,∀ t ∈ T, (22)

PDown
i ≤ PG

it − PG
i,t−1 ≤ PUp

i ∀ i ∈ G,∀ t ∈ T,

(23)∑
i∈G

witPG,max
i −

∑
i∈G

PG
it ≥ PReserve ∀ t ∈ T. (24)

The objective function (13) includes terms for unit startup costs
CSU and shutdown costsCSD in addition to the generation costs
in each time period. The PF Equations (14) and (15) are gener-
alized to include the effects of phase-shifting and tap-changing
transformers (Section 5.5. We abuse notation slightly by using
(Vt , δt , ϕt ,Tt ) to represent the vector of all voltage magnitudes,
voltage angles, and engineering control settings for time period
t .) The generation limits (16) and (17) are modified such that
uncommitted units must have zero real and reactive power gen-
eration. Box constraints (20) and (21) enforce engineering con-
trol limits and (22) limits the current on each transmission line;
these constraints and associated sets H and K are described in
detail in Section 5.5. Constraint (23) specifies positive and nega-
tive generator ramp limits PUp and PDown, respectively; these are
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physical limitations of the generators. Constraint (24) requires a
spinning reserve margin of at least PReserve; sometimes this con-
straint is written such that PReserve is a fraction of the total load
in each time period.

The SCUC formulation (13)–(24) is one ofmany possible for-
mulations. Some formulations include more precise ramp limits
and startup and shutdown characteristics; others include con-
straints governing generator minimum uptime and downtime.
Due to of the scale and presence of binary decision variables,
SCUC is one of the most difficult power systems optimization
problems. Bai andWei (2009) and Zhu (2009) providemore dis-
cussion of SCUC, including detailed formulations.

More broadly, SCUC belongs to a class of problems known
as multi-period or dynamic OPF. Dynamic OPF problems
span multiple time periods. Mathematically, each time period
requires a single copy of the underlying PF equations; the
dimensionality therefore scales linearly with the time horizon.
Coupling constraints then link the different time periods. In
the case of the SCUC, the ramping constraints (23) provide
this coupling. Grid-scale storage systems, such as batteries, also
require coupling constraints that create dynamic OPF problems
(Snyder, 2013). Other examples include system design problems
such as discussed in Frank and Rebennack (2015), where multi-
ple OPF problems are coupled by binary design variables.

3.3. Optimal Reactive Power Flow

ORPF, also known as reactive power dispatch or VAR control,
seeks to optimize the system reactive power generation in order
to minimize the total system losses. In ORPF, the system real
power generation is determined a priori, from the outcome of,
for example, a DC-OPF algorithm, UC, or another form of ED.
A basic ORPF formulation is

min P1, (25)

s.t. Pi (V, δ, ϕ,T ) = PG
i − PL

i ∀ i ∈ N, (26)

Qi (V, δ, ϕ,T ) = QG
i − QL

i ∀ i ∈ N, (27)

QG,min
i ≤ QG

i ≤ QG,max
i ∀ i ∈ G, (28)

Vmin
i ≤ Vi ≤ Vmax

i ∀ i ∈ N, (29)

δmin
i ≤ δi ≤ δmax

i ∀ i ∈ N, (30)

ϕmin
ik ≤ ϕik ≤ ϕmax

ik ∀ ik ∈ H, (31)

Tmin
ik ≤ Tik ≤ Tmax

ik ∀ ik ∈ K, (32)

Iik (V, δ) ≤ Imax
ik ∀ ik ∈ L. (33)

The power flow Equations (26) and (27) are again generalized
to include the effects of phase-shifting and tap-changing trans-
formers (Section 5.5). The vector of control variables is

u = (
P1,QG

i:i∈G, ϕik:ik∈H,Tik:ik∈K
)
,

while the vector of state variables x = (δ,V ) is identical to the
classic formulation. In ORPF, all real power load and generation
is fixed except for the real power at the slack bus, P1. Minimizing
P1 is therefore equivalent to minimizing total system loss.

One motivation for using ORPF is the reduction of the vari-
able space compared with fully coupled OPF (Contaxis et al.,

1986); another is the ability to reschedule reactive power to opti-
mally respond to changes in the system load without changing
previously established real power setpoints. Many interior point
algorithms for OPF have focused specifically on ORPF (Frank
et al., 2012a). Zhu (2009, Ch. 10) discusses several approximate
ORPF formulations and their solution methods.

3.4. Reactive Power Planning

RPP extends the ORPF problem to the optimal allocation of
new reactive power sources—such as capacitor banks—within
a power system in order to minimize either system losses or
total costs. RPP modifies ORPF to include a set of possible new
reactive power sources; the presence or absence of each new
source is modeled with a binary variable. The combinatorial
nature of installing new reactive power sources has inspired
many papers that apply heuristic methods to RPP (Frank et al.,
2012b).

A basic RPP formulation that minimizes total costs is

min C1 (P1) +
∑
i∈Q

wiCInstall
i , (34)

s.t. Pi (V, δ, ϕ,T ) = PG
i − PL

i ∀ i ∈ N, (35)

Qi (V, δ, ϕ,T )=QG
i +QNew

i −QL
i ∀ i ∈ N, (36)

QG,min
i ≤ QG

i ≤ QG,max
i ∀ i ∈ G, (37)

wiQNew,min
i ≤ QNew

i ≤ wiQNew,max
i ∀ i ∈ Q, (38)

Vmin
i ≤ Vi ≤ Vmax

i ∀ i ∈ N, (39)

δmin
i ≤ δi ≤ δmax

i ∀ i ∈ N, (40)

ϕmin
ik ≤ ϕik ≤ ϕmax

ik ∀ ik ∈ H, (41)

Tmin
ik ≤ Tik ≤ Tmax

ik ∀ ik ∈ K, (42)

Iik (V, δ) ≤ Imax
ik ∀ ik ∈ L, (43)

where CInstall
i represents the capital cost of each new reactive

power source i ∈ Q; QNew
i is the amount of reactive power

provided by each new reactive power source, subject to limits
QNew,min

i andQNew,max
i ; andwi is a binary variable governing the

decision to install each new reactive power source. Themodified
vector of control variables is

u = (
P1,QG

i:i∈G,wi:i∈Q,QNew
i:i∈Q, ϕik:ik∈H,Tik:ik∈K

)
.

Some variants of RPP also include real power dispatch in the
decision variables or include multiple load scenarios.

By necessity, RPP optimizes with respect to uncertain future
conditions—typically reactive power requirements for worst-
case scenarios. This uncertainty, together with the problem
complexity, make RPP a very challenging optimization problem
(Zhang et al., 2007). Zhang and Tolbert (2005) review both for-
mulations and solution techniques for RPP.

4. The admittancematrix

The PF equations are the defining constraints in OPF, and the
bus admittance matrix Ỹ in turn forms the core of the PF equa-
tions. OPF data sources do not typically provide Ỹ directly,
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Figure . � branch model.

and we therefore summarize the theory and mechanics of its
construction here. Readers uninterested in the electrical engi-
neering details may wish to skip this section; such readers may
reference Equations (53) to (56) as needed for the mathematical
definition of the matrix elements.

The elements of Ỹ derive from the application of Ohm’s and
Kirchoff ’s laws (Appendix B) to a steady-state AC electrical
network. Recall from Section 2.2 that the set of buses N and
set of branches L form undirected graph (N, L) that describes
the electrical network. Each branch (i, k) ∈ L has an associated
series admittance ỹik that governs the voltage–current relation-
ship between buses i and k. According to Kirchoff ’s Voltage Law
(KVL) and Ohm’s law,

Ĩik = (
Ṽi − Ṽk

)
ỹik, (44)

in which Ĩik is the current flowing through branch ik from bus
i to bus k. Branches may also have an associated shunt admit-
tance ỹShik , which represents leakage of current from within the
branch to the reference node. In physical terms, this leakage
occurs all along the branch, but in the model the shunt admit-
tance is applied in equal parts to the buses at each end of the
branch as illustrated in Fig. 2. This representation is called the
� branch model.

By Kirchoff ’s Current Law (KCL), the current Ĩi injected into
bus i must exactly equal the sum of all currents flowing out of
bus i via the various series and shunt admittances, including any
shunt admittance ỹSi associated with the bus itself. Neglecting
off-nominal branch turns ratios (described in Section 4.1), the
bus injection current is

Ĩi = Ṽi

⎛⎝ỹSi + 1
2

∑
k:(i,k)∈L

ỹShik + 1
2

∑
k:(k,i)∈L

ỹShki

⎞⎠
+

∑
k:(i,k)∈L

(
Ṽi − Ṽk

)
ỹik +

∑
k:(k,i)∈L

(
Ṽi − Ṽk

)
ỹki. (45)

Matrix Equation (1) is equivalent to Equation (45) if the ele-
ments of Ỹ are defined as

Ỹii = sum of all admittances connected to bus i
−Ỹik = sum of all admittances connected between bus i and

bus k (46)

Since only a single branch (i, k) connects bus i to bus k, the
off-diagonal elements become Ỹik = Ỹki = −ỹik. If there is no
connection between buses i and k, Ỹik = 0. Typically, each bus
connects to only a few branches, such that L ∈ O(N). Thus, Ỹ

is sparse, having dimension N × N but only N + 2L non-zero
entries.

4.1. Branchmodels

The � model of Fig. 2 is sufficient for modeling the majority
of power systems branch elements, including transmission lines,
cables, and transformers.Most power systems transformers have
nominal turns ratios; that is, the voltage ratio across the trans-
former exactly equals change in system voltage base across the
transformer (a 1:1 voltage ratio in per unit, with no phase shift).
As the per unit system automatically accounts for nominal turns
ratios (seeAppendixC), no corrections to the admittancematrix
are necessary.

Some transformers, however, do not have exactly a 1:1
voltage ratio in per unit. Such transformers are labeled “off-
nominal”; this category includes fixed-tap transformers with
other than unity turns ratios, tap-changing transformers, and
phase-shifting transformers. In practical power system models,
improperly neglecting off-nominal turns ratiosmay severely dis-
tort computed PF, such that any resulting OPF solution may be
unusable. Therefore, off-nominal transformers requiremodified
entries in Ỹ to account for the additional voltage magnitude or
phase angle change relative to the nominal case.

The generalized � branch model in Fig. 3 extends the �

model to accommodate both nominal and off-nominal turns
ratios. The model includes series admittance ỹik, shunt admit-
tance ỹShik , and an ideal transformer. Bus i is the tap bus and bus
k is the impedance bus, or Z bus. The transformer turns ratio in
per unit is a : 1, where a is a complex exponential consisting of
magnitude T and phase shift ϕ

a = Te jϕ,

such that in the figure Ṽi = aṼ ′
i and Ĩ = Ĩ′ik/a

∗. (To simplify the
mathematical presentation, we abuse notation throughout this
section by omitting the subscript ik on a, T , and ϕ.) Selecting
T = 1 and ϕ = 0 yields the nominal turns ratio.

In order to model the effects of the off-nominal turns ratio,
we require a partial admittance matrix Ỹ ′ such that(

Ĩik
Ĩki

)
=
(
Ỹ ′
ii Ỹ ′

ik

Ỹ ′
ki Ỹ ′

kk

)(
Ṽi

Ṽk

)
.

The elements of Ỹ ′ are derived from the application of KVL,
KCL, and Ohm’s law. From KCL at node i and the definitions
of Ṽ ′

i and Ĩ′i ,

Ĩik = 1
aa∗ Ṽi

(
ỹShik
2

+ ỹik

)
− 1

a∗ Ṽkỹik. (47)

Similarly, at bus k,

Ĩki = −1
a
Ṽiỹik + Ṽk

(
ỹShik
2

+ ỹik

)
. (48)
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Figure . Generalized� branch model, including off-nominal turns ratio.

Rearranging Equations (47) and (48) to form a matrix equation
yields Ỹ ′,

(
Ĩik
Ĩki

)
=

⎛⎜⎜⎜⎝
1
aa∗

(
ỹShik
2

+ ỹik

)
− 1
a∗ ỹik

−1
a
ỹik

ỹShik
2

+ ỹik

⎞⎟⎟⎟⎠
(
Ṽi
Ṽk

)
= Ỹ ′

(
Ṽi
Ṽk

)
.

(49)
When constructing the full admittance matrix Ỹ , the cor-

rected relationships of Equation (49) must be preserved. This
is done via appropriate substitutions in Equation (45); Section
4.2 gives formulas for the resulting admittance matrix entries. A
branchwith off-nominalmagnitude only (real valued a) leaves Ỹ
a symmetric matrix, but a phase-shifting transformer (complex
a) does not.

... Transmission lines and cables
The line characteristics for transmission lines and cables are
most often specified as a series impedance Rik + jXik and a
branch shunt admittance jbShik , which is sometimes given as “line
charging” reactive power. The� branch series admittance ỹik for
inclusion in Ỹ is then

ỹik = 1
Rik + jXik

= Rik

R2
ik + X2

ik
− j

Xik

R2
ik + X2

ik
. (50)

As is typical for � branch models, shunt susceptance bShik is
divided into two equal parts that are applied to the buses at each
end of the branch. For short lines, branch shunt susceptance is
negligible and therefore is usually omitted. Transmission lines
and cables have nominal turns ratios: T = 1.0 and ϕ = 0.

... Transformers
Like cables, power systems transformers have a series
impedance Rik + jXik that models the electrical character-
istics of the transformer windings. In PF analysis, however,
the transformer series resistance is often neglected, yielding
ỹik = − j/Xik. Although transformer models may also include a
shunt admittance ỹShik that represents the losses and magnetizing
characteristics of the transformer core, this shunt admittance is
nearly always neglected as well.

Off-nominal transformers have either T 
= 1 and/or ϕ 
= 0.
In OPF, both T and ϕ may be control variables: controllable T
models an on-load tap changer, while controllable ϕ models a
phase-shifting transformer.

4.2. Construction equations for admittancematrix

Any branch model may be distilled into a generic series admit-
tance ỹik, shunt admittance ỹShik , and complex turns ratio (nom-
inal or off-nominal) aik = Tike jϕik . Using Equation (46) and
incorporating the corrected off-nominal voltage–current rela-
tionships introduced in Section 4.1, the entries of Ỹ become

Ỹii = ỹSi +
∑

k:(i,k)∈L

1
|aik|2

(
ỹik + 1

2
ỹShik

)
+

∑
k:(k,i)∈L

(
ỹki + 1

2
ỹShki

)
,

(51)

Ỹik = −
∑

k:(i,k)∈L

1
a∗
ik
ỹik −

∑
k:(k,i)∈L

1
aik

ỹki, i 
= k, (52)

where aik = 1 for any branch with a nominal turns ratio. Equa-
tions (51) and (52) may be separated into real and imaginary
parts using the definition Ỹ = G + jB and the identity aik =
Tik
(
cosϕik + j sinϕik

)
,

Gii = gSi +
∑

k:(i,k)∈L

1
T 2
ik

(
gik + 1

2
gShik

)
+

∑
k:(k,i)∈L

(
gki + 1

2
gShki

)
, (53)

Gik = −
∑

k:(i,k)∈L

1
Tik

(
gik cosϕik − bik sinϕik

)
−

∑
k:(k,i)∈L

1
Tki

(
gki cosϕki + bki sinϕki

)
, i 
= k (54)

Bii = bSi +
∑

k:(i,k)∈L

1
T 2
ik

(
bik + 1

2
bShik

)
+

∑
k:(k,i)∈L

(
bki + 1

2
bShki

)
,

(55)

Bik = −
∑

k:(i,k)∈L

1
Tik

(
gik sinϕik + bik cosϕik

)
−

∑
k:(k,i)∈L

1
Tki

(−gki sinϕki + bki cosϕki
)
, i 
= k. (56)

AppendixDdescribes how to obtain the required parameters for
constructing the admittance matrix from publicly available data
sources.

5. The PF equations

The AC power flow equations transform the complex-domain
matrix function (2) into a set of real-valued simultaneous equa-
tions suitable for inclusion in mathematical programming for-
mulations. The most prevalent and compact form of the PF
equations is the bus injection model. However, the less compact
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branch flow model also describes Equation (2) and has several
advantages with respect to convex relaxation of OPF problems.

5.1. Bus injectionmodel

The bus injection model is usually synonymous with the term
“AC power flow equations” and provides a compact represen-
tation of power system behavior in terms of the real and reac-
tive power injection at each system bus. Use of the bus injection
model is ubiquitous in conventional PF and in the early OPF
literature.

For a given Ỹ , Equation (2) may be decomposed into a set of
equations for the real and reactive power injections by evaluat-
ing the real and imaginary parts of S, respectively. The result-
ing pair of equations may be written in several equivalent forms
depending on whether the voltages and admittance matrix ele-
ments are expressed in polar or rectangular coordinates. In the
literature, the most common forms of the AC PF equations are,
in order, as follows.

1. Selection of polar coordinates for voltage, Ṽi = Vi∠δi,
and rectangular coordinates for admittance, Ỹik = Gik +
jBik:

Pi (V, δ) = Vi

N∑
k=1

Vk
(
Gik cos (δi − δk)

+ Bik sin (δi − δk)
) ∀ i ∈ N, (57)

Qi (V, δ) = Vi

N∑
k=1

Vk
(
Gik sin (δi − δk)

− Bik cos (δi − δk)
) ∀ i ∈ N. (58)

2. Selection of polar coordinates for voltage, Ṽi = Vi∠δi,
and polar coordinates for admittance, Ỹik = Yik∠θik:

Pi (V, δ) = Vi

N∑
k=1

VkYik cos (δi − δk − θik) ∀ i ∈ N,

(59)

Qi (V, δ) = Vi

N∑
k=1

VkYik sin (δi − δk − θik) ∀ i ∈ N.

(60)

3. Selection of rectangular coordinates for voltage, Ṽi =
Ei + jFi, and rectangular coordinates for admittance,
Ỹik = Gik + jBik:

Pi (E, F ) =
N∑
k=1

Gik (EiEk + FiFk)

+ Bik (FiEk − EiFk) ∀ i ∈ N, (61)

Qi (E, F ) =
N∑
k=1

Gik (FiEk − EiFk)

− Bik (EiEk + FiFk) ∀ i ∈ N. (62)

Power systems texts (Wood and Wollenberg, 1996; Glover
et al., 2008; Zhu, 2009) provide exact derivations of these three
forms of the AC PF equations. (The fourth form—selection of
rectangular coordinates for voltage and polar coordinates for

admittance—is theoretically possible but has no advantages for
practical use.) Each form of the equations involves real-valued
quantities only. However, all forms are equivalent and give the
exact solution to the PF under the analysis assumptions outlined
in Appendix B.3.

The bus injectionmodel of theACPF equations yields exactly
2N simultaneous equations in 4N variables. Of these, only N +
M − 1 equations in are needed for conventional PF. Despite the
equations’ nonlinearity and complexity, efficient solution meth-
ods exist for the conventional PF problem (see Section 6.1).

5.2. Branch flowmodel

The branch flowmodel is an alternative formof the PF equations
that expresses the real and reactive PF in each system branch, as
derived fromEquation (44). Baran andWu (1989a, 1989b) origi-
nated thismodel as part of an optimal capacitor placement prob-
lem in radial distribution systems, although earlier researchers
had used similar, linear network flow models derived from DC
PF (Section 5.3; Azevedo et al. (2010)). The branch flow model
has received considerable recent interest because it offers advan-
tages for convex relaxation of OPF problems (Farivar and Low,
2013a, 2013b).

Low (2013) summarizes the branch flow model using three
sets of complex equations

Ṽi − Ṽk = Z̃ikĨik ∀ (i, k) ∈ L, (63)
Sik = ṼĩI∗ik ∀ (i, k) ∈ L, (64)

Si=
∑

k:(i,k)∈L
Sik−

∑
k:(i,k)∈L

(
Ski−Z̃ki

∣∣̃Iki∣∣2)+ (̃
ySi
)∗ ∣∣Ṽi

∣∣2 ∀ i ∈ N

(65)

in which Z̃ik = 1/̃yik is the complex series impedance of each
system branch. (Note that Equations (63) to (65) neglect branch
shunt admittances and off-nominal turns ratios.) The system
variables are 2L real-valued components of directed branch cur-
rents i → k, 2L directed branch real and reactive power flows
i → k, N bus voltage magnitudes, N bus voltage angles, and 2N
bus real and reactive power injections, for a total of 4N + 4L
variables. Similarly, there are 2L directed branch current defi-
nitions i → k, 2L directed branch real and reactive power defi-
nitions i → k, and 2N bus power balance equations, for a total
of 2N + 4L simultaneous equations. As with the bus injection
model, the system is underdetermined by exactly 2N variables.
However, the dimensionality of the system of equations is con-
siderably larger.

Frank and Rebennack (2015) present an alternative form of
the branch flow model that (i) uses rectangular coordinates for
the bus voltages and (ii) substitutes the real and reactive PF at the
receiving of each branch as variables in place of the branch cur-
rents. The branch power definitions follow directly from Equa-
tion (49) and the definition of complex power,

Pik = 1
T 2
ik

(
gik + gSik

2

) (
E2
i + F2

i
)

+ 1
Tik

(−gik cosϕik + bik sinϕik
)
(EiEk + FiFk)
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+ 1
Tik

(
gik sinϕik + bik cosϕik

)
(EiFk − FiEk)

∀ (i, k) ∈ L, (66)

Pki =
(
gik + gSik

2

) (
E2
k + F2

k
)

+ 1
Tik

(−gik cosϕik − bik sinϕik
)
(EiEk + FiFk)

+ 1
Tik

(
gik sinϕik − bik cosϕik

)
(EiFk − FiEk)

∀ (i, k) ∈ L, (67)

Qik = − 1
T 2
ik

(
bik + bSik

2

) (
E2
i + F2

i
)

+ 1
Tik

(
gik sinϕik + bik cosϕik

)
(EiEk + FiFk)

+ 1
Tik

(
gik cosϕik − bik sinϕik

)
(EiFk − FiEk)

∀ (i, k) ∈ L, (68)

Qki = −
(
bik + bSik

2

) (
E2
k + F2

k
)

+ 1
Tik

(−gik sinϕik + bik cosϕik
)
(EiEk + FiFk)

+ 1
Tik

(−gik cosϕik − bik sinϕik
)
(EiFk − FiEk)

∀ (i, k) ∈ L. (69)

Bus power balance equations (65) are still required but instead
take the form

Pi =
∑

k:(i,k)∈L
Pik +

∑
k:(i,k)∈L

Pik∀ i ∈ N, (70)

Qi =
∑

k:(i,k)∈L
Qik +

∑
k:(i,k)∈L

Qik∀ i ∈ N. (71)

Unlike Equations (63) to (65), Equations (66) to (71) do include
the effects of branch shunt admittances and off-nominal turns
ratios. The system of equations still contains 4N + 4L variables
(2N bus voltage components, 2N bus real and reactive power
injections, and 4L directed branch real and reactive power flows)
and 2N + 4L simultaneous equations.

5.3. DC PF

The AC PF equations are nonlinear. For conventional PF, this
nonlinearity requires the use of an iterative numerical method;
for OPF it implies both a nonlinear formulation and non-
convexity in the feasible region. In order to simplify the system
representation, power systems engineers have developed a linear
approximation to the PF equations. This approximation is called

DC PF—so named because the equations resemble the PF in a
direct current (DC) network.However, theDCPF equations still
model an AC power system.

The conventional development of the DC PF equations
requires several assumptions regarding the power system (Rau,
2003b; Zhu, 2009):

1. All system branch resistances are approximately zero;
that is, the transmission system is assumed to be lossless.
As a result, all θik = ±90◦ and all Gik = 0.

2. The differences between adjacent bus voltage angles
are small, such that sin(δi − δk) ≈ δi − δk and cos(δi −
δk) ≈ 1.

3. The system bus voltages are approximately equal to 1.0.
This assumption requires that there is sufficient reactive
power generation in the system to maintain a level volt-
age profile.

4. Reactive PF is neglected.
Applying these assumptions to Equation (57) produces the DC
power flow equation

Pi (δ) ≈
N∑
k=1

Bik (δi − δk) . (72)

Under normal operating conditions, DC PF models real
power transfer quite accurately. It has been successfully used in
many OPF applications that require rapid and robust solutions,
including in commercial software. However, the assumptions
required for DC PF can lead to significant errors for stressed
systems.

Neglecting off-nominal turns ratios, the exact equation for
branch power transfer is

Pik = gikV 2
i − gikViVk cos (δi − δk) − bikViVk sin (δi − δk),

(73)
cf. Equation (57), and the DC PF approximation is

Pik ≈ −bik (δi − δk) . (74)

The bik term dominates the exact expression because V 2
i ≈

ViVk cos (δi − δk) and therefore the first two terms in Equation
(73) largely cancel. We observe that Equation (74) overestimates
the magnitude of the branch power transfer (73) if

(i) The bus voltages at either end of the branch are depressed
relative to the assumed value of 1.0 p.u.; or

(ii) The angle difference between the buses is too large.
Observation (ii) follows from the relationship |sin (δi − δk)| ≤
|δi − δk|. Depressed voltages and larger than normal angle dif-
ferences are common in stressed power systems. In particular,
large differences in voltage in different areas of the system can
lead to significant error (Stott et al., 2009). Therefore, the DC
PF equations should not be used for OPF under stressed system
conditions unless they have been carefully evaluated for accu-
racy in the system under test.

As an example, consider an arbitrary transmission line from
bus i to bus k with series admittance 0.05 − j2.0. Let Ṽi =
0.95∠0◦ and Ṽk = 0.90∠−20◦. (Although these numbers do not
represent normal operation, they are plausible for a stressed
power system. Operating voltages as low as 0.9 p.u. are allowable
in emergency conditions, and angle differences of up to ±30°
can occur on long, heavily loaded transmission lines.) The exact
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power transfer for this line is
Pik = 0.05 × 0.952 − 0.05 × 0.95 × 0.90 cos (0◦ + 20◦)

−2.0 × 0.95 × 0.90 sin (0◦ + 20◦) = 0.590 p.u.

The DC approximate power transfer is

Pik ≈ −2.0 sin (0◦ + 20◦) ≈ 0.684 p.u.

The error in the approximate power transfer is 16%; most of this
error is attributable to the voltage difference. In systems with
severely depressed voltages, large absolute errors in line power
are typical, although the relative error in the proportion of total
power flowing in each line may be much smaller (Stott et al.,
2009).

Even under normal operation, the approximation of a loss-
less transmission network can also lead to significant errors in
generator scheduling, branch PF estimates, and marginal fuel
cost estimates. Power transfer errors for certain critically loaded
branches can be much higher than the average branch error.
Therefore, in practical DC PF models an estimate of the losses
must be reintroduced using approximate methods, especially if
the network is large (Stott et al., 2009). For further discussion
regarding the advantages and disadvantages of DC PF, includ-
ing loss approximation methods, we refer the interested reader
to Rau (2003a) and Stott et al. (2009). Throughout the rest of this
article, we use the AC PF equations.

5.4. The PF equations as constraints

In OPF, the PF equations form the core of the set of equality
constraints. A large majority of OPF formulations use the bus
injection model because (i) it is more compact and (ii) it more
closely resembles conventional PF, which facilitates the devel-
opment of tailored algorithms. The advantages of the branch
flow model are the explicit modeling of branch power flows,
which facilitates inclusion of transmission capacity constraints,
and that the form of the equations enables certain convex
relaxations.

Traditionally, the branch impedances and elements of Ỹ are
considered constant: most algorithmic development and analy-
sis in the engineering literature assumes constant Ỹ . In newer
OPF formulations Ỹ may also contain control (decision) vari-
ables due to phase-shifting or tap-changing transformers, which
significantly complicates the problem by introducing bilinear,
trilinear, or other nonlinear terms.

... Considerations for the bus injectionmodel
The key consideration when using the bus injection model is
the choice of polar or rectangular coordinates for voltage. The
advantage of voltage polar coordinates is that constraints on the
voltage magnitude can be enforced directly,

Vi ≥ Vmin
i ,

Vi ≤ Vmax
i .

In voltage rectangular coordinates, on the other hand, voltage
magnitude limits require the functional inequality constraints√

E2
i + F2

i ≥ Vmin
i ,√

E2
i + F2

i ≤ Vmax
i .

Similarly, if the voltage magnitude is fixed (for instance at a
PV bus; see Section 2.3), then in polar coordinates Vi can be
replaced with a constant value. In rectangular coordinates, how-
ever, a fixed voltage magnitude requires the equality constraint√

E2
i + F2

i = Vi.

Thus, for a fixed voltage magnitude, use of voltage polar coor-
dinates leads to a reduction of variables whereas the use of volt-
age rectangular coordinates leads to an increase in (nonlinear,
non-convex) equality constraints. For this reason, polar coor-
dinates are preferred both for conventional PF and most OPF
formulations.

There is, however, one compelling reason to use voltage rect-
angular coordinates: expressing voltage in rectangular coordi-
nates eliminates trigonometric functions from the PF equations.
The resulting PF Equations (61) and (62) are quadratic, which
presents several advantages (Torres and Quintana, 1998):

1. The elimination of trigonometric functions speeds eval-
uation of the equations.

2. The second order Taylor series expansion of a quadratic
function is exact; this yields an efficiency advantage in
higher-order interior-point algorithms for OPF.

3. The Hessian matrix for a quadratic function is constant
and must be evaluated only once. This simplifies the
application of Newton’s method to the Karush–Kuhn–
Tucker (KKT) conditions of the OPF formulation.

4. If the side constraints are also quadratic, then the entire
OPF problembecomes aQuadratically Constrained Pro-
gram, although it remains non-convex. This enables the
use of specialized solution algorithms.

In some cases, these computational advantages outweigh the
disadvantages associated with increased dimensionality and
enforcing voltage magnitude constraints. Table 2 summarizes
the differences between the two voltage coordinate choices.

For the admittance matrix elements, rectangular coordinates
(56) and (57) are typically favored because they facilitate the
use of certain approximations in fast-decoupled solution meth-
ods for conventional PF (Zhu, 2009). These approximations are
also useful in the development of the DC PF equations (Section
5.3). Finally, rectangular coordinates facilitate the inclusion of
transformer voltage ratios and phase angles as decision vari-
ables. However, none of these advantages strongly affects the AC
PF equations as implemented in many OPF formulations, and
some models use the polar form of the Equations (59) and (60).

Table . Comparison of the selection of voltage polar coordinates versus voltage
rectangular coordinates for the power flow equations. Bold entries indicate the
more favorable characteristic.

Polar coords. Rectangular coords.

Number of variables in
conventional PF

N + M − 1 2N − 2

Voltage magnitude limits Simple bounds Nonlinear functional
inequality constraint

Fixed voltage magnitude Variable elimination Nonlinear functional
by substitution equality constraint

Nature of PF equations Trigonometric Quadratic
First derivative of PF

equations
Trigonometric Linear

Second derivative of PF
equations

Trigonometric Constant
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... Considerations for the branch flowmodel
As solving OPF problems is NP-hard, convex relaxations are
of particular interest, especially when conditions are known
that cause these relaxations to be exact. There are several dif-
ferent approaches to convexify the OPF problem, dependent
on the formulation used (Low, 2013). Examples of such relax-
ations include semidefinite programming, second-order cone
programming, and convex Lagrangian dual. Quite surprisingly,
the exactness of some of these relaxations has been proven for
radial networks (under mild conditions). However, for mesh
networks under the classic bus injection model, examples with
large duality gap have been published and, as a consequence, the
relaxations are no longer exact.

In contrast, the branch flow model allows for exact relax-
ations and convexifications for both radial and mesh networks
(under mild conditions, for instance, no upper bounds on loads;
Farivar and Low (2013a, 2013b)). Moreover, the interpretation
of the decision variables in a branch flow model (for instance,
branch power and current flows) is more intuitive compared
with the semidefinite matrix and second-order cone program-
ming relaxations and tend to be numerically more stable com-
pared with second-order cone programming relaxations for the
bus injection models (Low, 2014).

If the rectangular coordinate branch flow model (66)–(69)
is used, then a linear relaxation may be obtained by introduc-
ing auxiliary variables for the quadratic terms and subsequently
applying the McCormick inequalities (Frank and Rebennack,
2015). Although the relaxation is not exact, in practice it can
be made relatively tight by introducing tailored cuts that con-
strain the branch power flows. The linear relaxation allows rapid
generation of lower bounds on the objective function value and
facilitates mixed integer-linear relaxations for more complex
OPF variants.

5.5. Side constraints

In addition to the PF equations, a typical OPF problem includes
a number of side constraints. The simplest of these are box con-
straints (8) to (11) that define the upper and lower limits for the
controllable generation, the bus voltagemagnitudes, and the bus
voltage angles.

If the system contains controllable phase-shifting or tap-
changing transformers, then the corresponding phase angles ϕ

and tap ratios T are introduced into the set of control variables.
The control variable vector u becomes

u = (
PG
i:i∈G,QG

i:i∈G, ϕik:ik∈H,Tik:ik∈K
)
,

whereH and K are the sets of branches with controllable-phase
shifting transformers and tap-changing transformers, respec-
tively. Since ϕ and T alter the elements of admittance matrix Ỹ ,
the left-hand sides of Equations (6) and (7) become functions
of ϕ and T : Pi (V, δ, ϕ,T ) and Qi (V, δ, ϕ,T ), respectively. The
formulation is also augmented with bound constraints on the
phase angles

ϕmin
ik ≤ ϕik ≤ ϕmax

ik ∀ ik ∈ H (75)

and the tap ratios

Tmin
ik ≤ Tik ≤ Tmax

ik ∀ ik ∈ K . (76)

Adding controllable phase-shifting or tap-changing transform-
ers significantly complicates the OPF problem, rendering many
common approximations and relaxations invalid. Some OPF
research has therefore explored alternative models for con-
trollable transformers and other advanced PF control devices,
such as the inclusion of auxiliary buses or idealization of such
transformers as controlled power injections (Acha et al., 2000;
Lehmköster, 2002; Xiao et al., 2002).

Many recent OPF formulations also include line limits; that
is, upper bounds on the branch current magnitudes. Since line
current is voltage dependent, an exact bound requires a function
inequality constraint. By Ohm’s law, the current magnitude in
branch ik is

Iik = ∣∣Ṽi − Ṽk
∣∣ yik,

in which yik is the magnitude of the branch admittance. Thus,
one version of the exact bound is∣∣Ṽi − Ṽk

∣∣ yik ≤ Imax
ik ,

⇔
√

(Vi cos δi −Vk cos δk)2+(Vi sin δi−Vk sin δk)
2≤ Imax

ik

yik
,

⇔ (Vi cos δi −Vk cos δk)2

+ (Vi sin δi −Vk sin δk)
2 ≤

(
Imax
ik

)2
y2ik

∀ ik ∈ L. (77)

(For branches with off-nominal turns ratios, the tap bus voltage
Vi and angle δi in Equation (77) must be corrected for the off-
nominal turns ratio. In this case, Vi is replaced by V ′

i = Vi/Tik
and δi is replaced by δ′

i = δi − ϕik.)
Rather than bounding the square of the current as is given

in Equation (77), most formulations instead bound the real and
reactive PF in the line

P2
ik + Q2

ik ≤ (
Smax
ik
)2

.

In almost all cases, this simplification is sufficiently accurate.

6. Solutionmethods

In this section, we provide a concise discussion of OPF solu-
tionmethods and their relationship to conventional PF. Asmany
OPF algorithms rely on or incorporate aspects of conventional
PF algorithms, we summarize conventional PF solution meth-
ods first.

6.1. Solutionmethods for conventional PF

Recall from Section 2.3 that conventional PF seeks a numerical
solution to the exactly determined system of complex nonlinear
equations

S = Ṽ ◦ (ỸṼ )∗ .

Newton’s method is typically used to solve this system and is
fully described in power systems texts (Wood and Wollenberg,
1996; Glover et al., 2008; Zhu, 2009). Here, we summarize the
solution of the AC PF equations with voltage polar coordinates.
The solution method for voltage rectangular coordinates is sim-
ilar; Zhu (2009) provides a good summary.
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The first-order Taylor series approximation of Equations (57)
and (58) about the current estimate ofV and δ yields

(
�P
�Q

)
≈

⎛⎜⎜⎝
∂P
∂δ

∂P
∂V

∂Q
∂δ

∂Q
∂V

⎞⎟⎟⎠(�δ

�V

)
,

≈ J
(

�δ

�V

)
, (78)

in which J is the Jacobian matrix of system (57)–(58). At each
iteration, the mismatches in the PF equations are

�Pi = (
PG
i − PL

i
)− Pi (V, δ) , (79)

�Qi = (
QG

i − QL
i
)− Qi (V, δ) . (80)

Newton’s method consists of iteratively solving Equation (78)
for the �δ and �V required to correct the mismatch in the
PF equations computed from Equations (79) and (80). Newton’s
method is locally quadratically convergent. Therefore, given a
sufficiently good starting point, the method reliably finds the
correct solution to the PF equations. However, convergence is
not guaranteed: the method can fail to converge if the starting
voltage estimate is poor, as can occur in a stressed power sys-
tem (Bienstock, 2013). To address the convergence issue, a few
researchers have applied globally convergent solution methods
(Han, 1977) to conventional PF and OPF, including the applica-
tion of homotopy (Cvijić et al., 2012), a backtracking line search
method (Pajic and Clements, 2005), and trust region methods
(Pajic and Clements, 2005; Sousa et al., 2011). Suchmethods are
generally robust with respect to poor quality starting points but
incur a significant computational penalty.

... Decoupled PF algorithms
In practical power systems, real power injections are strongly
coupled to voltage angles and reactive power injections are
strongly coupled to voltage magnitudes. Conversely, real power
injections areweakly coupled to voltagemagnitudes and reactive
power injections are weakly coupled to voltage angles. This fea-
ture has led to the development of decoupled solution methods
for the PF equations (Glover et al., 2008; Zhu, 2009). The most
basic decoupling method is to use a set of approximate Taylor
series expansions of the form

�P ≈ ∂P
∂δ

�δ,

�Q ≈ ∂Q
∂V

�V.

This allows the use of separate Newton updates for δ andV with
correspondingly smaller matrices—a significant computational
advantage.

Although decoupled PF uses an approximate updatemethod,
it still computes exact real and reactive power mismatches �P
and�Q from Equations (79) and (80) and updates bothV and δ

at each iteration. Decoupled PF therefore is locally convergent to
the exact solution to the PF. However, due to the approximated
Jacobian matrix, more iterations are required for convergence
(Glover et al., 2008). Zhu (2009) discusses several decoupled PF
variants in detail.

... DC PF algorithms
In DC PF, there is no distinction between PV and PQ buses
because all voltagemagnitudes are considered to be 1.0 and reac-
tive power is neglected. As with the AC PF, the slack bus angle
is fixed. As the DC PF equations are linear, they may be solved
directly for the voltage angles using

δ = B−1P.

(This is simply a solvedmatrix representation of Equation (72).)

6.2. Solutionmethods for OPF

The existing OPF literature describes an immense variety of
approaches and solution methods. As mentioned in the Intro-
duction, our intent in this article is to provide an operations
researcher with sufficient information to formulate OPF prob-
lems, understand the challenges and open problems in the field,
and comprehend the electrical engineering-dominated litera-
ture on OPF solutionmethods. Therefore, we refrain from sum-
marizing the vast literature on tailored OPF solution methods
and instead refer the reader to the two surveys (Frank et al.,
2012a, 2012b). We do, however, highlight several popular meth-
ods and their relationship to conventional PF.

Many classic nonlinear optimization techniques have been
applied to the OPF problem, including gradient descent meth-
ods, Newton’s method, Sequential Linear Programming (SLP),
and Sequential Quadratic Programming (SQP). Recall from
Section 2.4 that many OPF algorithms partition the decision
variables into a set of control variables u and a set of state vari-
ables x. At each search step, the algorithm fixes u and derives x
by solving a conventional PF. When this approach is used, the
Jacobian matrix J from conventional PF plays several important
roles.

1. It provides the linearization of the PF equations required
for SLP and SQP iterations.

2. It provides sensitivities in the PF injections with respect
to the state variables.

3. It provides a direct calculation of portions of the Hessian
matrix of the Lagrangian function for OPF algorithms
based on Newton’s method (see Sun et al. (1984)).

4. It is therefore often used to improve computational
efficiency in computing the KKT conditions for the
Lagrangian function.

More recently, nonlinear Interior-Point Methods (IPMs) and
various convex relaxation approaches such as semidefinite pro-
gramming have become popular for OPF (Frank et al., 2012a).
Many such methods rely heavily on specific characteristics of
the PF equations in order to establish convergence properties
or evaluate the tightness of the relaxation. Many meta-heuristic
methods and hybrid methods combining meta-heuristics with
deterministic approaches have also been applied to OPF (Frank
et al., 2012b). In the case ofmeta-heuristics, the typical approach
is again to select a trial vector for u and compute the correspond-
ing state vector x and objective function value using conven-
tional PF.
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6.3. Practical considerations

In our experience, there are several practical and computational
aspects of OPF stemming from the power flow equations that
can cause confusion or lead to solution errors. Two of these are
the use of the per unit system and formats for the exchange of
OPF data, discussed in Appendices C and D, respectively. We
note several others here.

... Decoupled solutionmethods for OPF
Like decoupled PF, decoupled OPF algorithms take advantage
of the strong P–δ and Q–V relationships in the PF equations
by formulating separate real and reactive OPF subproblems.
These subproblems and their optima are assumed to be indepen-
dent. Unlike decoupled PF, however, decoupled OPF solves the
subproblems sequentially rather than simultaneously: the real
subproblem solves for the optimal values of P and δ while hold-
ing Q and V constant, and the reactive subproblem solves for
the optimal values of Q and V while holding P and δ con-
stant (Sun et al., 1984; Contaxis et al., 1986). To enable this
decomposition, decoupled OPF neglects the weak P–V andQ–δ
relationships in the constraints, introducing slight errors in the
computed power flows. Decoupled OPF is therefore distinctly
different from decoupled PF in that the decoupled OPF solution
is inexact.

The error in the decoupled OPF solution with respect to
the true optimum is a function of the accuracy of the decou-
pling assumptions and can be significant if the system includes
advanced control devices (Zhang, 2010). These assumptions
should therefore be evaluated for accuracy if a decoupled OPF
approach is considered. In the OPF literature, it is not always
immediately apparent whether decoupled OPF is in use or
whether a decoupled PF procedure is used within the solution
algorithm for a coupled OPF. Due to the implications for the
OPF solution quality, the careful reader should try to discern
which is the case.

... Degrees versus radians
Power systems engineers usually report angles in degrees,
including in data files for OPF (see Appendix D). For com-
putation, these angles must be converted to radians, for two
reasons:

1. Nearly all optimization software and algebraic modeling
languages—including AMPL and GAMS—implement
trigonometric functions in radians, not degrees.

2. Even when using the DC PF equations (which require
no trigonometric function evaluations), radians must be
used due to the derivation of the equations. If degrees
are used, the powers computed from DC PF will have a
scaling error of 180/π .

PF software typically handles these conversions transparently,
accepting input and giving output in degrees. Thus, it can be dif-
ficult to remember that general-purpose optimization software
requires an explicit conversion.

... System initialization
In both conventional PF and OPF, the convergence of the PF
equations depends strongly on the selection of a starting point.

Bus 1

Bus 2

Bus 3 Bus 5

Bus 4

Branch (1,2)

Branch (1,3)

Branch (2,4)

Bran
ch 

(3,
4)

Branch (3,5)

B
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h 

(4
,5

)

Figure . Bus and branch indices in an example five-bus electrical network.

Given a starting point far from the correct solution, the PF equa-
tions may converge to a meaningless solution or may not con-
verge at all. In the absence of a starting point, standard practice
is to initialize all voltage magnitudes to 1.0 p.u. and all voltage
angles to zero; this is called a “cold start” or a “flat start.” The
alternative is a “warm start,” in which the voltages and angles
are initialized to the solution of a pre-solved power flow. Warm
starts are often used in online OPF to minimize computation
time and ensure that the search begins from the current system
operating condition. Warm starts also aid the algorithm in con-
verging to the nearest local minimum, which is often desirable
during real-time operation of power systems.

If a good starting point is unavailable or the OPF algorithm
encounters convergence problems, it is also possible to switch
to a more robust solution method. Trust region methods and
their variants coupled with IPMs are a popular and effective
approach (Pajic and Clements, 2005; Wang et al., 2007; Sousa
et al., 2011). The primary disadvantage of such methods is a sig-
nificant computational penalty compared with their less-robust
counterparts.

7. Numerical example

We now present a small numerical example to illustrate some
key elements of a typical OPF formulation. The network of Fig. 4
provides the basis for the example OPF problem. It has N = 5
buses and L = 6 branches, with corresponding sets

N = {1, 2, 3, 4, 5}
and

L = {(1, 2), (1, 3), (2, 4), (3, 4), (3, 5), (4, 5)} .

Using this network, we derive the admittance matrix (Section
7.1), define the PF equations (Section 7.2), and develop the clas-
sic OPF problem and its optimal solution (Section 7.3).

7.1. Admittancematrix

Table 3 provides a set of branch data for the example system.
Note that branch (3, 4) is a phase-shifting transformer and
branch (4, 5) has an off-nominal voltage ratio. In addition to the
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Table . Branch impedance data for the network of Fig. . All quantities except phase angles are given in per unit. Dots indicate nominal voltage ratios and phase angles.

From bus To bus Series resistance Series reactance Shunt susceptance Voltage ratio Phase angle
i k Rik Xik bShik Tik ϕik

  . . . · ·
  . . . · ·
  . . . · ·
  . . . · −3.0◦
  . . . . ·
  . . . · ·

branch data, bus 2 has a shunt susceptance of j0.30 pu and bus
3 has a shunt conductance of 0.05 pu.

To compute the admittance matrix for this system, we first
compute the series admittance ỹik of each branch using Equation
(50). For example, the series admittance of branch (1, 3) is

ỹ13 = 0.023
0.0232 + 0.1452

− j
0.145

0.0232 + 0.1452
≈ 1.067 − j6.727.

The remaining branches have series admittances

ỹ12 ≈ 0.000 − j3.333,
ỹ24 ≈ 5.660 − j30.189,
ỹ34 ≈ 0.294 − j3.824,
ỹ35 ≈ 0.000 − j3.125,

and
ỹ45 ≈ 0.000 − j2.000.

Next, we construct Ỹ using Equations (51) and (52). For
example, diagonal element Ỹ33 consists of summing the admit-
tances of branches (1, 3), (3, 4), and (3, 5), plus the con-
tributions of the shunt conductance at bus 3 and the shunt
susceptance of branch (1, 3). Branch admittances ỹ34 and ỹ35
have off-nominal turns ratios

a34 = 1.0e− j3.0◦ ≈ 0.999 − j0.052
and

a35 = 0.98e− j0.0◦ = 0.980,

respectively. (Note that a34a∗
34 = 1.0 if rounding errors are

neglected.) Therefore, matrix element Ỹ33 is

Ỹ33 ≈ (
1.067 − j6.727

)+ j
0.04
2

+ 0.294 − j3.824(
0.999 − j0.052

) (
0.999 + j0.052

) − j3.125
0.9802

+ 0.05 ≈ 1.41 − j13.78.

An example off-diagonal element is Ỹ34, which from Equation
(52) is

Ỹ34 ≈ − 0.294 − j3.824(
0.999 + j0.052

) ≈ −0.09 + j3.83.

The full admittance matrix is

Ỹ ≈

⎛⎜⎜⎜⎜⎝
1.07 − j10.04 0.00 + j3.33 −1.07 + j6.73 0 0
0.00 + j3.33 5.66 − j33.22 0 −5.66 + j30.19 0

−1.07 + j6.73 0 1.41 − j13.78 −0.09 + j3.83 0.00 + j3.19
0 −5.66 + j30.19 −0.49 + j3.80 5.95 − j36.01 0.00 + j2.00
0 0 0.00 + j3.19 0.00 + j2.00 0.00 − j5.13

⎞⎟⎟⎟⎟⎠.

7.2. PF equations

Using the previously developed admittancematrix, we can write
the real and reactive PF equations for any bus in the five-
bus example system. For example, from Equation (57), the real
power injection at bus 1 is

P1 (V, δ) = V1

5∑
k=1

Vk
(
G1k cos (δ1 − δk) + B1k sin (δ1 − δk)

)
,

≈ 1.07V 2
1 cos (δ1 − δ1) − 1.07V1V3 cos (δ1 − δ3)

− 10.04V 2
1 sin (δ1 − δ1)

+ 3.33V1V2 sin (δ1 − δ2) + 6.73V1V3 sin (δ1 − δ3),

≈ 1.07V 2
1 − 1.07V1V3 cos (δ1 − δ3)

+ 3.33V1V2 sin (δ1 − δ2) + 6.73V1V3 sin (δ1 − δ3).

Similarly, fromEquation (58), the reactive power injection at bus
1 is

Q1 (V, δ) = V1

5∑
k=1

Vk
(
G1k sin (δ1 − δk) − B1k cos (δ1 − δk)

)
,

≈ 1.07V 2
1 sin (δ1 − δ1) − 1.07V1V3 sin (δ1 − δ3)

+ 10.04V 2
1 cos (δ1 − δ1)

− 3.33V1V2 cos (δ1 − δ2) − 6.73V1V3 cos (δ1 − δ3),

≈ −1.07V1V3 sin (δ1 − δ3) + 10.04V 2
1

− 3.33V1V2 cos (δ1−δ2)−6.73V1V3 cos (δ1 − δ3).

7.3. OPF formulation and solution

We now develop the classic OPF formulation for the five-bus
example system presented in Fig. 4, with the addition of two
advanced control elements. The branch impedance data are as
given in Table 3, except that we assign ϕ34 and T35 to be deci-
sion variables representing a phase-shifting transformer and an
on-load tap changer, respectively. ϕ34 and T35 have limits

−30.0◦ ≤ ϕ34 ≤ 30.0◦

and
0.95 ≤ T35 ≤ 1.05.

Tables 4 and 5 give the bus data (voltage limits, load, and gener-
ation). The system power base is 100 MW.
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Table . Bus data for the network of Fig. . All quantities are given in per unit. Dots
indicate zero values.

Bus Load real power Load reactive power Min. bus voltage Max. bus voltage
i PLi QL

i Vmin
i Vmax

i

 · · 1.00 1.00
 · · 0.95 1.05
 · · 0.95 1.05
 0.900 0.400 0.95 1.05
 0.239 0.129 0.95 1.05

Table . Generator data for the network of Fig. . All quantities are given in per unit.

Min. generator Max. generator Min. generator Max. generator
Bus real power real power reactive power reactive power
i PG,min

i PG,max
i QG,min

i QG,max
i

 −∞ ∞ −∞ ∞
 0.10 0.40 −0.20 0.30
 0.05 0.40 −0.20 0.20

Given this data, the sets defining the formulation are

N = {1, 2, 3, 4, 5} ,

G = {1, 3, 4} ,

L = {(1, 2), (1, 3), (2, 4), (3, 4), (3, 5), (4, 5)} ,

H = {(3, 4)} ,

and
K = {(3, 5)} .

Let the three generator cost functions, in thousands of dollars,
be

C1
(
PG
1
) = 0.35PG

1 ,

C3
(
PG
3
) = 0.20PG

3 + 0.40
(
PG
3
)2

,

C4
(
PG
4
) = 0.30PG

4 + 0.50
(
PG
4
)2

,

in which the PG
i are expressed in per-unit.

To develop the full formulation, it is first necessary to re-write
Ỹ as derived in Section 7.1 to explicitly include ϕ34 and T35. Let

a34 = cosϕ34 + j sinϕ34

and
a35 = T35.

(Note that a34a∗
34 = 1.0, 1/a34 = cosϕ34 − j sinϕ34 = a∗

34, and
1/a∗

34 = cosϕ34 + j sinϕ34 = a34.) Then, using Equations (51)
and (52) and simplifying,

Ỹ33 = 1.41 − j10.53 − j
1
T 2
35

× 3.13,

Ỹ34 = −0.29 cos ϕ34 − 3.82 sinϕ34

+ j (3.82 cosϕ34 − 0.29 sinϕ34) ,

Ỹ43 = −0.29 cos ϕ34 + 3.82 sinϕ34

+ j (3.82 cosϕ34 + 0.29 sinϕ34) ,

Ỹ35 = j
1
T35

× 3.13,

and

Ỹ53 = j
1
T35

× 3.13.

Ỹ44, Ỹ55, and the other remaining matrix elements are
unchanged.

Bus 1 is the system slack bus and therefore Ṽ1 is fixed to
1.0∠0.0◦. To construct the formulation, we round all numeri-
cal values to two decimal places. (This rounding does not affect
model feasibility because sufficient degrees of freedom exist in
the state variables.) Following Equations (5) to (11), (75), and
(76), the full formulation is

min 0.35PG
1 + 0.20PG

3 + 0.40
(
PG
3
)2 + 0.30PG

4 + 0.50
(
PG
4
)2

,

s.t. PG
1 = 1.07 − 1.07V3 cos (−δ3) + 3.33V2 sin (−δ2)

+ 6.73V3 sin (−δ3) ,

0 = 5.66V 2
2 − 5.66V2V4 cos (δ2 − δ4)

+ 3.33V2 sin (δ2) + 30.19V2V4 sin (δ2 − δ4) ,

PG
3 = 1.41V 2

3 − 1.07V3 cos (δ3)

+ (−0.29 cosϕ34 − 3.82 sinϕ34)V3V4 cos (δ3 − δ4)

+ 6.73V3 sin (δ3) + (3.82 cosϕ34 − 0.29 sinϕ34)

×V3V4 sin (δ3 − δ4)

+ 3.13
T35

V3V5 sin (δ3 − δ5) ,

PG
4 − 0.900 = 5.95V 2

4 − 5.66V4V2 cos (δ4 − δ2)

+ (−0.29 cosϕ34 + 3.82 sinϕ34)V4V3 cos (δ4 − δ3)

+ 30.19V4V2 sin (δ4 − δ2)

+ (3.82 cosϕ34 + 0.29 sinϕ34)V4V3 sin (δ4 − δ3)

+ 2.00V4V5 sin (δ4 − δ5) ,

−0.239 = 3.13
T35

V5V3 sin (δ5 − δ3) + 2.00V5V4 sin (δ5 − δ4) ,

QG
1 = 10.04 − 1.07V3 sin (−δ3) − 3.33V2 cos (−δ2)

− 6.73V3 cos (−δ3) ,

0 = −5.66V2V4 sin (δ2 − δ4) + 33.22V 2
2

− 3.33V2 cos (δ2) − 30.19V2V4 cos (δ2 − δ4) ,

QG
3 = −1.07V3 sin (δ3) + (−0.29 cosϕ34 − 3.82 sinϕ34)

×V3V4 sin (δ3 − δ4)

+
(
10.53 + 3.13

T 2
35

)
V 2
3 − 6.73V3 cos (δ3)

− (3.82 cosϕ34 − 0.29 sinϕ34)V3V4 cos (δ3 − δ4)

− 3.13
T35

V3V5 cos (δ3 − δ5) ,

QG
4 − 0.940 = −5.66V4V2 sin (δ4 − δ2)

+ (−0.29 cosϕ34 + 3.82 sinϕ34)V4V3 sin (δ4 − δ3)

+ 36.01V 2
4 − 30.19V4V2 cos (δ4 − δ2)

− (3.82 cosϕ34 + 0.29 sinϕ34)V4V3 cos (δ4 − δ3)

− 2.00V4V5 cos (δ4 − δ5) ,

−0.129 = 5.13V 2
5 − 3.13

T35
V5V3 cos (δ5 − δ3)

− 2.00V5V4 cos (δ5 − δ4) ,

0.10 ≤ PG
3 ≤ 0.40,

0.05 ≤ PG
4 ≤ 0.40,

−0.20 ≤ QG
3 ≤ 0.30,

−0.20 ≤ QG
4 ≤ 0.20,
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−30.0◦ ≤ ϕ34 ≤ 30.0◦,

0.95 ≤ T35 ≤ 1.05,

0.95 ≤ Vi ≤ 1.05, i ∈ {2, 3, 4, 5} ,

−180.0◦ ≤ δi ≤ 180.0◦, i ∈ {2, 3, 4, 5} ,

PG
1 ,QG

1 unrestricted.

Voltage angles δ1, δ2, δ3, and δ4 are restricted to one full sweep of
the unit circle. Slack bus generator powers PG

1 and QG
1 are unre-

stricted, and branch current limits are neglected.
For this formulation, the vector of control variables is

u = (
PG
1 ,PG

3 ,PG
4 ,QG

1 ,QG
3 ,QG

4 , ϕ34,T35
)

and the vector of state variables is

x = (δ2, δ3, δ4, δ5,V2,V3,V4,V5) .

The optimal solution for this formulation is

V2 ≈ 0.981, V3 ≈ 0.957, V4 ≈ 0.968, V5 ≈ 0.959,

δ2 ≈ −12.59◦, δ3 ≈ −1.67◦, δ4 ≈ −13.86◦, δ5 ≈ −9.13◦,

PG
1 ≈ 0.947, PG

3 ≈ 0.192, PG
4 ≈ 0.053,

QG
1 ≈ 0.387, QG

3 ≈ −0.127, QG
4 ≈ 0.200,

ϕ34 ≈ 12.38◦, T35 ≈ 0.95,

with objective function value 0.4016596. If the controllable
phase-shifting and tap-changing transformers are instead fixed
to ϕ34 = −3.0◦ and T35 = 0.98, as originally specified, the opti-
mal solution becomes

V2 ≈ 0.983, V3 ≈ 0.964, V4 ≈ 0.970, V5 ≈ 0.950,

δ2 ≈ −7.50◦, δ3 ≈ −4.22◦, δ4 ≈ −8.20◦, δ5 ≈ −8.64◦,

PG
1 ≈ 0.946, PG

3 ≈ 0.195, PG
4 ≈ 0.058,

QG
1 ≈ 0.249, QG

3 ≈ −0.072, QG
4 ≈ 0.200,

with objective function value 0.4041438, a cost increase of
approximately 0.6%.

As an illustration, we implemented three versions of the clas-
sic formulation (5)–(11), augmented with constraints (75) and
(76), in the GAMS modeling language. The three versions each
use a different formof the power flow equations: (i) polar voltage
coordinates with rectangular admittance coordinates (57)–(58),
(ii) polar voltage coordinates with polar admittance coordinates
(59)–(60), and (iii) rectangular voltage coordinates with rectan-
gular admittance coordinates (61)–(62). The model is publicly
available in the publisher’s online edition of IIE Transactions. For
the example, themodel yielded identical optimal solutions using
three local nonlinear solvers, SNOPT, MINOS, and CONOPT,
and verified as globally optimal using the global solver
LINDOGlobal.

8. Conclusion

In this article, we have addressed the modeling of power sys-
tems, the OPF formulation and common variants, and both the-
oretical and practical aspects of OPF problems. For the reader
interested in learning more, particularly regarding optimization
algorithms that have been used for OPF, we recommend any or
all of the following.

1. Read the classic papers on OPF (for instance, Dommel
and Tinney (1968); Alsac and Stott (1974); Stott and
Hobson (1978); Sun et al. (1984)). These papers provide
a detailed discussion of the foundations of OPF and pro-
vide context for more recent work.

2. Review textbooks which describe the OPF problem
(Wood and Wollenberg, 1996; Zhu, 2009). These text-
books provide clear, detailed formulations and also pro-
vide lists of relevant references, although they often omit
foundational material on power system modeling.

3. Review the survey papers on OPF from the past sev-
eral decades (for instance, Huneault and Galiana (1991);
Momoh et al. (1999a, 1999b); Frank et al. (2012a,
2012b)). Reading the older surveys prior to the more
recent ones provides insight into howOPFhas developed
over time.

4. Experiment with the GAMS OPF formulations pro-
vided to accompany Section 7, which are available in the
online appendix of IIE Transactions. Alternatively, install
and experiment with the OPF capabilities available in
MATPOWER (Zimmerman et al., 2011). Experimenta-
tion with either software will provide insight into the
practical challenges of OPF.

The material presented in this article should provide a sufficient
foundation for understanding the content of the references cited
above and elsewhere in the article.

In recent years, OPF has become one of the most widely
researched topics in electric power systems engineering. We
hope that this article encourages a similar level of engagement
within the operations research community, particularly in the
development of new, efficient OPF algorithms.
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Appendices

Appendix A: Notation

This Appendix documents the definitions for the mathemati-
cal symbols used throughout the article. See also Section 2.1 for
general comments on notation.

A.1. Sets, indices, and dimensions

The following dimensions and indices are used in the OPF for-
mulations within this article:

N total number of system buses (nodes);
L total number of system branches (arcs);
M number of system load (PQ) buses;
i, k indices corresponding to system buses and branches;
c contingency case index;
t time period index.

System branches are indexed as arcs between buses. For exam-
ple, the branch between buses i and k is denoted by (i, k) or ik.

There is no standard set notation within the OPF literature.
(Many authors do not use sets in their formulations.) For con-
venience, however, we adopt the following sets in this article:

N set of system buses (nodes);
L set of system branches (arcs);
M set of load (PQ) buses;
G set of controllable generation buses;

H set of branches with controllable phase-shifting
transformers;

K set of branches with controllable tap-changing
transformers;

Q set of planned locations (buses) for new reactive power
sources;

C set of power system contingencies for contingency
analysis;

T set of time periods for multi-period OPF.

Remarks:
1. We use L to indicate the number of system branches

because B is reserved for the bus susceptance matrix.
2. In the optimization community, c often refers to a vec-

tor of objective function coefficients. In this article, how-
ever, we use uppercase C for objective function coeffi-
cients and reserve lowercase c for the contingency case
index of SCED described in Section 3.1.

3. For clarity, we use H and K to represent sets of con-
trollable phase-shifting and tap-changing transformers
rather than S (often used to designate sources or scenar-
ios) andT (often used to designate timeperiods). The let-
ters H and K otherwise have no special association with
phase-shifting and tap-changing transformers.

A.2. Units

The following electrical units are used in this article:
V Volt (unit of electrical voltage);
A Ampere (unit of electrical current);
W Watt (unit of real electrical power);
VA Volt-Ampere (unit of apparent electrical power);

VAR Volt-Ampere Reactive (unit of reactive electrical power).
Watts, Volt-Amperes, andVolt-Amperes Reactive have the same
SI (Système International, that is, metric) unit representation
(one Volt times one Ampere) but differ in physical interpreta-
tion as described in Appendix B.4.

A.3. Electrical quantities

In power systems analysis, electrical quantities are represented
in the frequency domain as phasor quantities (complex num-
bers). Complex numbers may be represented as a single com-
plex variable, as two real-valued variables in rectangular form
a + jb, or as two real-valued variables in polar form c∠γ ; all
of these notations are found in the OPF literature. (Complex
number notation is explained in more detail in Section B.3.)
Here, we document the usual symbols and relationships used for
the electrical quantities; some notational exceptions exist in the
literature.

A... Impedance and admittance

Z̃ik complex impedance of branch ik;
Rik resistance of branch ik (real part of Z̃ik);
Xik reactance of branch ik (imaginary part of Z̃ik)

Z̃ik = Rik + jXik;
ỹik complex series admittance of branch ik;
gik series conductance of branch ik (real part of ỹik);
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bik series susceptance of branch ik (imaginary part of ỹik)
ỹik = 1/Z̃ik = gik + jbik;

ỹSi complex shunt admittance at bus i;
gSi shunt conductance of bus i (real part of ỹSi );
bSi shunt susceptance of bus i (imaginary part of ỹSi )

ỹSi = gSi + jbSi ;
ỹShik complex shunt admittance of branch ik;
gShik shunt conductance of branch ik (real part of ỹShik );
bShik shunt susceptance of branch ik (imaginary part of ỹShik )

ỹShik = gShik + jbShik ;
Ỹik complex ikth element of the bus admittance matrix;
Yik magnitude of ikth element of the bus admittance matrix;
θik angle of ikth element of the bus admittance matrix;
Gik conductance of ikth element of the bus admittance

matrix (real part of Ỹik);
Bik susceptance of ikth element of the bus

admittance matrix (imaginary part of Ỹik)
Ỹik = Yik∠θik = Gik + jBik.

Note the distinction between lowercase y, g, and b and uppercase
Y , G, and B: the former represents the values corresponding to
individual system branch elements, whereas the latter refers to
the admittance matrix that models the interaction of all system
branches.

A... Voltage

Ṽi complex (phasor) voltage at bus i;
Vi voltage magnitude at bus i;
δi voltage angle at bus i;
Ei real part of complex voltage at bus i;
Fi imaginary part of complex voltage at bus i Ṽi = Vi∠δi =

Ei + jFi.

A... Current

Ĩi complex (phasor) current injected at bus i;
Ii magnitude of current injected at bus i;
Ĩik complex (phasor) current in branch ik, directed frombus

i to bus k;
Iik magnitude of current in branch ik.

A... Power

PL
i load (demand) real power at bus i;

QL
i load (demand) reactive power at bus i;
SLi load (demand) complex power at bus i SLi = PL

i + jQL
i ;

PG
i generator (supply) real power at bus i;

QG
i generator (supply) reactive power at bus i;
SGi generator (supply) complex power at bus i SGi = PG

i +
jQG

i ;
Pi net real power injection at bus i (Pi = PG

i − PL
i );

Qi net reactive power injection at bus i (Qi = QG
i − QL

i );
Si net complex power injection at bus i Si = SGi − SLi =

Pi + jQi.

A... Other

ϕik phase shift of phase-shifting transformer in branch ik;
Tik tap ratio of tap-changing transformer in branch ik.

A... Comments
The phasor indicator ˜ is omitted for complex power S,
as S is always understood to be a complex quantity. In
the literature, the indicator ˜ is also often omitted for
V , I, y, and Y , but we include it here to disambiguate
the complex quantities from their associated (real-valued)
magnitudes.

Appendix B: Fundamental concepts

This Appendix summarizes several fundamental concepts of
electrical circuit theory and power systems analysis. For further
background, we refer interested readers to the excellent text-
books by O’Malley (2011) and Glover et al. (2008).

The fundamental electrical quantities are voltage and cur-
rent. Voltage describes the potential energy per unit of charge
between two nodes in an electric circuit, whereas current
describes the flow rate of electric charge between circuit nodes.
Voltage and current are analogous to pressure and fluid flow in
a hydraulic system. Voltage multiplied by current yields power,
that is, energy transfer per unit time.

B.1. Ohm’s law

Ohm’s law describes the relationship between the voltage V
across and the current I flowing through an electrical circuit ele-
ment, such as a transmission line. Ohm’s law states that

V = IR,

in which resistance R provides the constant of proportionality
between voltage and current. Ohm’s law as written here applies
to direct current (DC) circuits but is readily extended to the
steady-state analysis of alternating current (AC) circuits (see
Appendix B.3).

B.2. Kirchoff’s laws

Electrical circuits consist of nodes (physical points of intercon-
nection) connected by circuit elements, which provide paths for
electrical current. Kirchoff ’s laws govern the physical behavior
of electric circuits. KVL states that the sum of voltages around a
closed loop in an electrical circuit is equal to zero (Fig. A1(a)).
To apply KVL properly, the sign convention for each voltage

i
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k

Vik

Vij

Vjk

+

−

+

−

+

−

(+ Clockwise)

Vij + Vjk − Vik = 0

i

j

k

�
Ii�

Ik� I�j

(+ In)

Ii� + Ik� − I�j = 0

(a) (b)

Figure A. Illustration of Kirchoff’s laws: (a) KVL and (b) KCL.
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must be considered: if the positive node for the defined voltage
is encountered first while traversing the loop, then the voltage is
added; if the negative node is encountered first, then the voltage
is subtracted (that is, its inverse is added).

KCL states that the sum of currents at an electrical node
is equal to zero (Fig. A1(b)). As with KVL, sign convention is
important. Typically, currents defined as entering the node are
added, whereas those defined as leaving the node are subtracted.
Therefore, KCLmay be stated equivalently as follows: the sum of
currents entering an electrical node is exactly equal to the sumof
currents leaving that node. KCL is the circuit analysis equivalent
of flow balance in network theory.

KVL and KCL are complementary; both must be satisfied in
any valid solution to a power flow problem. In OPF, KVL and
KCL are not enforced directly, but the construction of the admit-
tance matrix ensures that they remain satisfied (see Section 4).

B.3. AC circuit analysis

For power flow analysis, AC electric power systems are analyzed
under the assumption of sinusoidal steady-state operation. At
sinusoidal steady state, all system voltages and currents are sinu-
soids with fixed magnitude, frequency, and phase shift. Under
these conditions, the time-domain differential equations gov-
erning system voltage and currentmay be transformed into a set
of complex algebraic equations in the frequency domain. This
phasor representation of the system is much easier to solve.

A phasor represents a sinusoidal time-domain signal as
a complex exponential in the frequency domain using the
relationship

c sin
(
2π f t + γ

)
Time Domain ⇔ ce jγ

Frequency Domain.

The frequency f of the signal is fixed and therefore omitted from
the phasor notation. The phasor ce jγ may be written as c∠γ

in polar coordinates or as a + jb in rectangular coordinates, in
which, according to Euler’s formula,

a = c cos γ ,

b = c sin γ ,

c =
√
a2 + b2,

γ = arctan
b
a
.

For voltages and currents, c and γ represent magnitude and
phase angle, written as Ṽ = V∠δ for voltages and Ĩ = I∠θ for
currents. In electrical engineering, voltage and current phasors
are expressed as Root-Mean-Square (RMS) quantities rather
than peak quantities. This is done so that frequency-domain
power calculations yield the correct valueswithout the need for a
scaling factor. For a sinusoid, the RMSmagnitude is 1/

√
2 times

the peak magnitude. Thus, the time-domain voltage waveform

VPk sin
(
2π f t + δ

)
has the frequency domain phasor

VPk√
2
e jδ.

Ohm’s law, KVL, and KCL remain valid for AC circuit analy-
sis. For AC quantities, Ohm’s law takes the form

Ṽ = ĨZ̃,

in which Z̃ = R + jX is the complex impedance that describes
the relationship between sinusoidal voltage Ṽ and sinusoidal
current Ĩ for a particular circuit element. Resistance R mod-
els power consumption, and reactance X represents the effect
of electrical storage (capacitors and inductors). At steady state,
storage elements absorb and release energy during different por-
tions of the AC cycle, producing a phase shift between voltage
and current. It is also common to write Ohm’s law in the form

ỸṼ = Ĩ,

in which Ỹ = 1/Z̃ is the admittance, the reciprocal of
impedance. In rectangular coordinates, Ỹ = G + jB, in which
G is the conductance and B is the susceptance.

B.4. Complex power

Power is the rate of energy transfer; that is, the derivative of
energy with respect to time. In the time domain, electrical
power is the product of voltage and current. In AC power sys-
tems, however, instantaneous electrical power fluctuates as volt-
age and current magnitude and polarity change over time. For
frequency-domain analysis, power systems engineers use the
concept of complex power to characterize these time-domain
power fluctuations.

Complex power is a phasor quantity consisting of real power
and reactive power. Real power represents real work, that is,
a net transfer of energy from source to load over time. Reac-
tive power, on the other hand, represents circulating energy—a
cyclic exchange of energy that averages zero net energy transfer
over time. Reactive power is sometimes called imaginary power,
both because it does not perform real work and because it is the
imaginary component of the phasor.

Real power transfer occurs when voltage and current are
in phase, whereas reactive power transfer occurs when voltage
and current are 90° out of phase (that is, orthogonal). Given a
reference voltage v(t ), an arbitrary (time domain) AC current
i(t ) can be represented by the sum of a direct component id(t )
(in phase with the voltage) and quadrature component iq(t )
(orthogonal to the voltage). The direct component corresponds
to real power and the quadrature component reactive power, as
illustrated in Fig. A2.

By convention, reactive power is considered positive when
current lags voltage. Therefore, complex power S is given by

S = Ṽ Ĩ∗ = P + jQ

and consists of orthogonal components P (real power) and Q
(reactive power). (Here and elsewhere in this article, the symbol
∗ denotes complex conjugation rather than an optimal value; this
use is typical in electrical engineering.) The magnitude of com-
plex power, |S|, is called the apparent power and is often used to
specify power systems equipment and transmission line ratings.
Complex and apparent power have units of Volt-Amperes (VA),
real power has units of Watts (W), and reactive power has units
of Volt-Amperes Reactive (VAR).
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Figure A. Conceptual illustration of real and reactive power using time-domain waveforms. In the figure, current i(t ) lags voltage v(t ) by °.

Appendix C: The per unit system

In power systems analysis, electrical quantities are usually
expressed as a ratio of the actual SI quantity to a reference,
or base, quantity; this transformation of variables is called the
per unit system. Base quantities have SI units (Volts, Amperes,
Ohms, etc.), and per unit quantities are dimensionless and are
labeled using a designation, if any, of “p.u.” The per unit value of
an SI quantity x on a given base xBase is

xpu = x
xBase

.

Correct interpretation of the SI value of a per unit quantity there-
fore requires knowledge of the base quantity. For example, a
power of 0.15 p.u. on a 10MVAbase equals 1.5MW, but 0.15 p.u.
on a 1000 MVA base equals 150 MW. (In per unit, real power,
reactive power, and apparent power share a common base with
units of VA.)

In power systems analysis, base quantities exist for voltage,
current, power, impedance, and admittance. Once any two sys-
tem bases are specified, the others are fixed exactly. In three-
phase PF analysis, convention is to specify the voltage and power
bases,

VBase = Line-to-line Voltage,

SBase = Three-phase Power,

and calculate the remaining system bases according to

IBase = SBase√
3VBase

,

ZBase = VBase√
3 IBase

= V 2
Base

SBase
,

YBase =
√
3 IBase
VBase

= SBase
V 2
Base

= 1
ZBase

.

For mathematical convenience, power systems engineers typi-
cally set SBase to one of 10, 100, or 1000 MVA and select VBase
as the nominal line-to-line voltage at each bus. Thus, SBase is
constant throughout the power system, but the other bases are
distinct at each system bus. When VBase is selected in this way,
the voltage ratio of most system transformers becomes 1:1 in
per unit, simplifying the development of the system admittance
matrix (Section 4).

With a proper selection of system bases, the per unit system
has several advantages over the SI system of measurement, most
notably as follows.

1. Per Unit quantities have consistent magnitudes on the
order of 1.0, which improves the numerical stability of
power flow calculations.
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2. The use of per unit eliminates the need to distin-
guish between single-phase and three-phase electrical
quantities.

3. The use of per unit eliminates the need to apply volt-
age and current scaling factors at the majority of system
transformers.

4. The per unit system is easier to interpret at a glance.
(For example, per unit voltage should always lie within
the approximate range 0.95–1.05 p.u., regardless of the
SI voltage.)

An in-depth discussion of these advantages is beyond the scope
of this article; we instead refer the interested reader to Glover
et al. (2008).

All calculations that can be performed in the SI system can
also be performed in per unit. However, (i) per unit and SI
quantities cannot be mixed in calculations, and (ii) all per unit
calculations must be performed on a consistent set of bases.
Power systems texts frequently mix per unit and SI units, for
instance, reporting power in MW but voltage in per unit. In
OPF, convention is to specify source and load power in SI
units, indicate the system power base, and specify all other
quantities directly in per unit (see Appendix D). The pow-
ers must be converted to per unit prior to evaluating the
power flow equations, but no other conversions are usually
necessary.

Appendix D: Data exchange

Two common formats for the academic exchange of power
flow and OPF case data are the IEEE Common Data For-
mat (Working Group on a Common Format for Exchange of
Solved Load Flow Data, 1973) and the MATPOWER Case For-
mat (Zimmerman and Murillo-Sánchez, 2011). Most power
systems data are proprietary. However, a few publicly avail-
able test cases for OPF are distributed in one or both of these
formats (see http://www.ee.washington.edu/research/pstca/ and
Zimmerman and Murillo-Sánchez, 2011), and many OPF
researchers use these test cases to benchmark algorithms. This
section summarizes the structure of these formats and their rela-
tionship to the classic OPF formulation; the goal is to assist the
reader in interpreting and applying the limited available pub-
lished data.

D.1. The IEEE common data format

The IEEE Common Data Format (CDF) was first developed
in order to standardize the exchange of PF case data among
utility companies (Working Group on a Common Format for
Exchange of Solved Load Flow Data, 1973). It has since been
used to archive and exchange power systems test case data
for the purpose of testing conventional PF and OPF algo-
rithms. The format includes sections, or “cards,” for title data,
bus data, branch data, loss zone data, and interchange data.
(Originally, utilities exchanged CDF data by mail on paper
card media.) Only the title, bus, and branch data are rele-
vant for classic OPF as described in this article. The full spec-
ification for the IEEE CDF can be found in Working Group
on a Common Format for Exchange of Solved Load Flow

Table D. Field specification for IEEE CDF bus data. The sixth columnmaps the field
to an index, parameter, or variable used in the classic OPF formulation given in
Section .. (Some fields are used indirectly via inclusion in Ỹ .)

Field Columns Field name Data type Units Quantity in OPF

 – Bus Number Integer i (bus index)
 – Bus Name Text

 – Bus Area Integer

 – Loss Zone Numbera Integer

  Bus Type Integer Specialb

 – Voltage Magnitude Numeric p.u. Vi
 – Voltage Angle Numeric deg. δi

 – Load Real Power Numeric MW PLi
 – Load Reactive Power Numeric MVAR QL

i

 – Gen. Real Power Numeric MW PGi
 – Gen. Reactive Power Numeric MVAR QG

i

 – Base Voltagea Numeric kV

 – Desired Voltage Numeric p.u. Vi (Special
c)

 – Max. Reactive Power Numeric MVAR QG,max
i

or

Max. Voltage Magnituded Numeric p.u. Vmax
i

 – Min. Reactive Power Numeric MVAR QG,min
i

or

Min. Voltage Magnituded Numeric p.u. Vmin
i

 – Bus Shunt Conductance Numeric p.u. gSi
 – Bus Shunt Susceptance Numeric p.u. bSi
 – Remote Bus Number Integer

aOptional field.
b = PQ, = PQ (within voltage limits), = PV (within VAR limits), = Swing.
cIndicates target voltage magnitude for voltage-controlled (PV) buses.
dGives reactive power limits if bus type is , voltage limits if bus type is .

Data (1973) and an abbreviated description is available at
http://www.ee.washington.edu/research/pstca/.

Each IEEE CDF data card consists of plain text with fields
delimited by character column. The title data card is a single line
that includes summary information for the case, including the
power base SBase in MVA. The bus and branch data cards fol-
low, beginning with the characters BUS DATA FOLLOWS and
BRANCH DATA FOLLOWS, respectively, and ending with the
flag characters -999. Each line within the card gives the data
for a single bus or branch.

Tables D1 and D2 list the IEEE CDF field specifications for
bus and branch data, respectively. The fields include a mixture
of SI and per unit quantities. Conversion of all quantities to per
unit is required prior to use in an OPF formulation. Nominal-
valued and unused fields in the data have zero entries. This quirk
of the specification requires some caution in processing the data;
for example, a value of 0.0 in the branch voltage ratio field should
be interpreted as a nominal tap ratio (T = 1.0).

The IEEE CDF format is adapted to the compact exchange
of system control data rather than OPF data. The field structure
therefore has several limitations:

1. Some IEEE CDF fields specify final variable values (for
instance, voltagesVi) for conventional PF. For OPF, these
fields should be understood as a feasible or near-feasible
starting point rather than an optimal solution. (Due
to rounding, the reported solution may not be strictly
feasible.)

http://www.ee.washington.edu/research/pstca/
http://www.ee.washington.edu/research/pstca/
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Table D. Field specification for IEEE CDF branch data. The sixth column maps the
field to an index, parameter, or variable used in the classical OPF formulation given
in Section .. (Some fields are used indirectly via inclusion in Ỹ .)

Field Columns Field name Data type Units Quantity in OPF

 – Tap Bus Number Integer i (from bus index)

 – Z Bus Number Integer k (to bus index)
 – Line Areaa Integer

 – Loss Zone Numbera Integer

  Circuit Number Integer

  Branch Type Integer Specialb

 – Branch Resistance Numeric p.u. Rik
 – Branch Reactance Numeric p.u. Xik
 – Branch Shunt Susceptance Numeric p.u. bShik
 – Line Rating a,c Numeric MVA Imax

ik

 – Line Rating a Numeric MVA

 – Line Rating a Numeric MVA

 – Control Bus Number Integer

  Side Integer

 – Voltage Ratio Numeric p.u. Tik
 – Phase Angle Numeric deg. ϕik

 – Min. Voltage Tap Numeric p.u. Tmin
ik

or

Min. Phase Angled Numeric deg. ϕmin
ik

 – Max. Voltage Tap Numeric p.u. Tmax
ik

or

Max. Phase Angled Numeric deg. ϕmax
ik

 – Tap Step Size Numeric p.u.

or

Phase Angle Step Sized Numeric deg.

 – Min. Voltage Numeric p.u.

or

Min. MVar Transfer Numeric MVar

or

Min. MW Transfere Numeric MW

 – Max. Voltage Numeric p.u.

or

Max. MVar Transfer Numeric MVar

or

Max. MW Transfere Numeric MW

a Optional field.
b = Transmission line, = Fixed T and ϕ, = Controllable T and fixed ϕ (voltage
control), = Controllable T and fixed ϕ (MVAR control), = Fixed T and control-
lable ϕ.

c Conversion to per-unit current (using rated branch voltage) is required.
d Gives voltage tap limits or step if branch type is  or , phase angle limits or step
if branch type is .

e Gives voltage limits if branch type is , MVAR limits if branch type is , MW limits
if branch type is .

2. The fields bus type (bus field 5) and branch type (branch
field 6) specify system control methods and are there-
fore of limited use in OPF. However, the bus and branch
types govern the interpretation of certain other fields in
the IEEE CDF, as described in the table footnotes. For
example, for PQ buses, bus fields 14 and 15 give voltage
limits Vmax

i and Vmin
i , respectively. For PV buses, these

same fields instead give reactive power generation limits
QG,max

i and QG,min
i , respectively.

3. For IEEE CDF fields that depend on the bus and branch
types, the data are sufficient for conventional PF but

Table D. Field specification for bus data matrix in MATPOWER case data (input
fields only). The fifth columnmaps the field to an index, parameter, or variable used
in the classic OPF formulation given in Section .. (Some fields are used indirectly
via inclusion in Ỹ .)

Column Field description Data type Units Quantity in OPF

 Bus Number Integer i (bus index)
 Bus Type Integer Speciala

 Load Real Power Numeric MW PLi
 Load Reactive Power Numeric MVAR QL

i

 Bus Area Integer

 Bus Shunt Conductance Numeric MWb gSi
 Bus Shunt Susceptance Numeric MVARb bSi
 Voltage Magnitude Numeric p.u. Vi
 Voltage Angle Numeric deg. δi

 Base Voltage Numeric kV

 Loss Zone Integer

 Max. Voltage Magnitude Numeric p.u. Vmax
i

 Min. Voltage Magnitude Numeric p.u. Vmin
i

a = PV, = PQ, = Swing, = Isolated.
b Specified as a MW or MVAR demand forV = 1.0 p.u.

incomplete for OPF. For example, the IEEE CDF lacks
voltage limits for PVbuses and reactive power generation
limits at PQ buses; the field structure prevents these data
from being available. The user must supply (or assume)
values for the incomplete data.

4. The IEEECDF lacks other data required for OPF, includ-
ing generator real power limits and cost data.

Given these limitations, publicly archived IEEE CDF case data
are most useful for obtaining the network structure and associ-
ated bus and branch admittance data.

D.2. MATPOWER case format

MATPOWER (Zimmerman et al., 2011) is an open-source soft-
ware package forMATLAB that includes functions for both con-
ventional PF and OPF. The MATPOWER case format is a set
of standard matrix structures used to store power systems case
data and closely resembles the IEEE CDF. MATPOWER case
data consists of a MATLAB structure with fields baseMVA,
bus, branch, gen, and gencost. baseMVA is a scalar giv-
ing the system power base SBase in MVA. The remaining fields
are matrices. Like the IEEE CDF, the MATPOWER case struc-
ture uses a mixture of SI and per unit quantities and specifies
nominal-valued branch tap ratios as 0 instead of 1.0. The format
is described in detail in theMATPOWERmanual (Zimmerman
and Murillo-Sánchez, 2011).

Tables D3, D4, and D5 describe the bus, branch, and gen
matrices. The gencost matrix has the same number of rows
as the genmatrix, but the column structure provides a flexible
description of the generator cost function. Column 1 specifies
the type of costmodel: 1 for piecewise linear or 2 for polynomial.
Columns 2 and 3 give the generator startup and shutdown costs.
The interpretation of columnnumbers 4 and greater depends on
the type of cost model.

� For a piecewise linear cost model, column 4 specifies the
number of coordinate pairs n of the form (P,C) that
generate the piecewise linear cost function. The next 2n
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Table D. Field specification for branch datamatrix in MATPOWER case data (input
fields – only). The fifth columnmaps the field to an index, parameter, or variable
used in the classic OPF formulation given in Section .. (Some fields are used indi-
rectly via inclusion in Ỹ .)

Column Field description Data type Units Quantity in OPF

 Tap Bus Number Integer i (from bus index)

 Z Bus Number Integer k (to bus index)
 Branch Resistance Numeric p.u. Rik
 Branch Reactance Numeric p.u. Xik
 Branch Shunt Susceptance Numeric p.u. bShik
 Line Rating (Long-term)a Numeric MVA Imax

ik

 Line Rating (Short-term)a Numeric MVA

 Line Rating (Emergency)a Numeric MVA

 Voltage Ratio Numeric p.u. Tik
 Phase Angle Numeric deg. ϕik

 Branch Status Binary

a Conversion to per unit current (using rated branch voltage) is required.

columns, beginning with column 5, give the coordinate
pairs (P0,C0), . . . , (Pn−1,Cn−1), in ascending order. The
units ofC are $/h and the units of P are MW.

� For a polynomial cost model, column 4 specifies the
number n of polynomial cost coefficients. The next n
columns, beginning with column 5, give the cost coeffi-
cients Cn−1, . . . ,C0 in descending order. The correspond-
ing polynomial cost model isCn−1Pn−1 + · · · +C1P +C0.
The units are such that the cost evaluates to dollars $/h for
power given in MW.

Table D. Field specification for generator data matrix in MATPOWER case data
(input fields – only). The fifth column maps the field to an index, parameter, or
variable used in the classic OPF formulation given in Section ..

Column Field description Data type Units Quantity in OPF

 Bus Number Integer i (generator index)

 Gen. Real Power Numeric MW PGi
 Gen. Reactive Power Numeric MVAR QG

i

 Max. Reactive Power Numeric MVAR QG,max
i

 Min. Reactive Power Numeric MVAR QG,min
i

 Voltage Setpoint Numeric p.u.

 Gen. MVA Basea Numeric MVA

 Generator Statusb Binary

 Max. Real Power Numeric MW PG,max
i

 Min. Real Power Numeric MW PG,min
i

a Defaults to system power base SBase .
b  indicates generator out of service (remove from OPF formulation).

If gencost is included, then MATPOWER case data con-
tain nearly all of the information necessary to formulate
the classic OPF problem as described in Section 2.4. How-
ever, MATPOWER makes no provision for including trans-
former tap ratios or phase-shifting transformer angles in
the set of decision variables; therefore, limits on these
variables are not present in the data structure. The user
must supply limits for these controls if they exist in the
formulation.
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