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 A B S T R A C T

This review paper examines the evolution of power systems optimization over the past fifty years by 
considering two distinct periods: from 1970 to 1990 and from 1990 to the present. The initial period is 
typically defined by a centralized power system framework that prevailed around the world. The latter observes 
a transition to a decentralized structure in a market environment, marked by an increasing integration of 
renewables and advanced technologies, in addition to maintaining a centralized power system structure for 
some countries. Since we review the broad topic of power systems optimization, this analysis focuses on the 
main power system problems — investment, operation planning, operations, control, and forecasting — to 
define the main research streams. We provide a thorough exploration of the operations research methods 
applied to specific problem types within each period. Thus, this review not only underscores the pivotal role of 
operations research in addressing the challenges posed by changing landscapes and advanced technologies but 
also unveils the transformative journey of power systems optimization along with future research directions.
1. Introduction

Linear programming (LP) has evolved into a practical approach 
with Dantzig’s development of the Simplex Method in 1947 (Dantzig, 
1949). Since the late 1980s, the rise of algebraic modeling languages, 
the widespread accessibility of robust and user-friendly computers, 
and ongoing improvements in algorithms have all driven the develop-
ment of operations research, and LP in particular (Bixby, 2002). The 
application of operations research techniques in power systems has 
given rise to innovative methodologies, addressing complex challenges 
inherent to the control, operations, operation planning, and investment 
of power systems. That is, operations research has played a crucial role 
to enhance efficiency, ensure reliability, and promote sustainability of 
power systems around the world. Initially, LP, as an operations research 
method, was employed to address specific problems within the power 
system area, such as economic dispatch and expansion planning. Over 
the last five decades, not only has the power system undergone trans-
formative changes, but operations research has also seen remarkable 
advancements. The evolution of power systems optimization can be 
followed through a timeline marked by dynamic shifts in technological 
perspective, regulatory frameworks, and environmental considerations.

A centralized power system structure was common around the 
world until the 1990s. In a centralized power system, the system 
operator holds complete authority over all production, transmission 
and distribution decisions. The computation of dispatch decisions in-
volves minimizing the overall cost of meeting demand at each node 
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in the network while complying with network and production con-
straints (Kagiannas et al., 2004). Starting in the 1990s, many power 
systems around the world underwent a shift towards a liberalized, 
market-oriented environment, adopting a predominantly decentralized 
structure. Under this framework, producers have the flexibility to sell 
their energy in a market (Möst & Keles, 2010). In recent decades, along 
with the transition to a liberalized market environment, the integration 
of renewable energy sources, advancements in energy storage systems, 
the integration of advanced technologies and the growing emphasis 
on environmental sustainability have introduced new aspects to power 
systems optimization.

The use of optimization models, algorithms, and decision-support 
tools has become instrumental in addressing the complexities of power 
systems over the past fifty years. From 1970 to 1990, power systems 
optimization mainly relied on LP, even though the first studies incorpo-
rating discrete decisions, nonlinearities and uncertain parameters had 
appeared. During this period, decomposition techniques — as a solution 
methodology — were employed primarily for investment, unit commit-
ment and reservoir optimization problems. Then, optimization models 
became more complex due to the increasing need for discrete deci-
sions, nonlinearities, uncertain parameters and decentralization. This 
evolution led to the growing utilization of mixed-integer linear pro-
gramming (MILP) and mixed-integer nonlinear programming (MINLP) 
next to LP. In this context, second-order cone (SOC) and mixed-integer 
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Fig. 1. Components of power system optimization throughout the entire planning horizon.
second-order cone (MISOC) models have also been developed. Along-
side an increased nonlinearity representation, equilibrium problems 
with equilibrium constraints (EPEC) and mathematical programs with 
equilibrium constraints (MPEC) were introduced in response to the 
evolving decentralized structure (Fig.  1). In recent times, increasing 
levels of uncertainty plagued the power systems, leading to the de-
velopment of various models based on stochastic programming (SP), 
robust optimization, and fuzzy logic. Considering several factors such 
as uncertainty representation, probability, and risk degree, the appro-
priate method must be determined to deal with uncertainty. Given the 
emerging challenges, new solution methods and algorithms for power 
systems have been developed to enhance the reliability and robustness 
of completed solutions.

We would like to point out that this paper focuses on topics related 
to power systems optimization. Thus, this paper examines the main 
power system problems, including investment, operation planning, op-
erations, control and forecasting (Fig.  1). While these main problems 
do not by themselves represent a full power system analysis, they 
reflect the main streams of research on power systems optimization. 
Investment problems consider a planning horizon spanning from years 
to several decades, with decisions related to generating units, trans-
mission lines and distribution systems being determined. Operation 
planning problems can span from days to years and encompass mainte-
nance planning for lines, transformers and generators, fuel procurement 
planning and hydro-thermal scheduling. Operations problems, which 
often extend over minutes to days, determine scheduling and dispatch 
decisions. Control problems, aimed at ensuring the stability of the 
entire power system, cover horizons ranging from real-time to minutes. 
To this end, we review the key features of optimization models and 
solution methods that have shaped the power systems optimization 
field in the last fifty years. As pointed out, since this review covers 
the broad topic of power systems optimization, we have to focus on 
selected topics, defining the main research streams. This is especially 
true, as the field of power systems is interdisciplinary at the intersection 
2 
of economics, electrical engineering and operations research, where we 
focus on the operations research perspective.

We analyze power systems optimization in two separate sections. 
The first covers the early period from 1970 to 1990s, characterized 
by a centralized structure and monopoly nature. The second period, 
from 1990s to the present, considers decentralized as well as cen-
tralized structures, still applicable for some countries. In particular, 
the second period not only features optimization models and solution 
methodologies for a decentralized structure, but also encompasses re-
cent methodological developments for a centralized structure. As a 
result, we structure our analysis into two historical periods to examine 
the evolution of power systems optimization. Although some solu-
tion methodologies remain similar across both operational paradigms, 
they exhibit significant variations. Along with the transition of power 
system operational paradigms, a number of aspects require this dis-
tinction. These aspects include computational capabilities, operations 
research approaches, the incorporation of renewable energy sources, 
the use of advanced technologies, and regulatory and environmental 
requirements, all of which have seen substantial development since the 
1990s.

The remainder of the paper is organized as follows. Section 2 
reviews early times (1970–1990) with a focus on the centralized frame-
work. Section 3 discusses recent times (1990–present) to review the 
decentralized framework and updated methodologies on the centralized 
structure. Section 4 emphasizes key directions for future research and 
Section 5 concludes the paper. We summarize the abbreviations in 
Table  6 at the end of the paper.

2. Early times—Centralized operations and planning (1970–1990)

2.1. Overview

In this section, we focus on the centralized operations and planning 
from 1970 to 1990. In a centralized framework, the power system op-
erator possesses comprehensive technical and cost-related data, along 
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with complete control over the power system. Despite some advance-
ments in computing machinery and software between 1947 (when LP 
was developed) and 1990, they remained insufficient to overcome com-
putational limitations for solving large-scale problems (Bixby, 2002). 
Given the computational capabilities of the period, LP was the pre-
dominant optimization approach. The power systems operated within 
a comparatively stable condition characterized by regulated prices and 
minimal uncertainty (Botterud et al., 2005). In terms of modeling un-
certainty, the forecasting of load and fuel prices presented the primary 
challenge within this period, while renewable technologies such as 
wind, solar or biogas were utilized minimally for electricity generation. 
Therefore, the primary focus in this period was on deterministic mod-
els. However, the studies on stochastic models started in this period; 
they have broadened the scope and depth of operations research appli-
cations in power systems since 1990s. This section covers investment, 
operation planning, operations, control, and forecasting as main power 
system problems. We note that some power systems continue to operate 
centrally and recent methodologies have been adapted to their current 
needs, as explored in Section 3.

2.2. Investment

Power system expansion planning seeks to optimize the investment 
and retirement strategies for generating units, transmission lines and 
distribution systems, specifying sizing, location, and timing. The aim 
under a centralized framework is to ensure the supply of the power 
demands at lowest cost while considering technical, economic, and en-
vironmental constraints (Cho et al., 2022). During this period, notable 
progress was made in computational methods for expansion planning. It 
is important to note that incorporating uncertainties into the expansion 
planning problem, such as future loads, investment costs of production 
technologies and operation costs (particularly fuel costs) is essential for 
obtaining reliable solutions (Conejo et al., 2016). The time and spatial 
resolutions play an integral role in expansion planning models. That is, 
a high temporal and spatial representation can result in computational 
complexity, while low resolution might lead to inaccurate representa-
tion in the expansion planning problem (Gacitua et al., 2018; Kotzur 
et al., 2021).

2.2.1. Generation expansion planning—MILP, decomposition
Generation expansion planning (GEP) aims at identifying an optimal 

power generators portfolio (type, location, and installation timing) to 
meet future power demand over a long time horizon. Expansion plan-
ning models were among the initial applications of LP techniques in the 
1950s (Massé & Gibrat, 1957). Given the discrete nature of operational 
and technical constraints, optimization models have evolved from LP 
to MILP to effectively address GEP needs (Cho et al., 2022).

There are two main approaches in the literature to formulate GEP 
problems: static and dynamic. A static approach represents a single 
decision point at the beginning of the planning horizon and does not 
decide when to build each generator, but rather whether the generators 
should be built at all. A dynamic approach determines decisions about 
generation expansion at different stages in the planning horizon. Thus, 
it determines if and when each plant will be built. Dynamic approaches 
lead to more accurate models than static ones; the expected increase in 
solution quality comes at the cost of increased computational complex-
ity. Dynamic approaches are generally treated as multi-stage problems 
and solved by decomposition methods (Cote & Laughton, 1979).

The formulation of a dynamic GEP problem (as a MILP model) is as 
follows (Conejo et al., 2016), 

(𝐺) min
∑

𝑡∈𝑇

[

∑

ℎ∈𝐻

[

∑

𝑖∈𝐺
𝐶𝐸
𝑖𝑡 𝑝

𝐸
𝑖ℎ𝑡 +

∑

𝑛∈𝑁
𝐶𝑁
𝑛𝑡 𝑝

𝑁
𝑛ℎ𝑡

]

+
∑

𝑛∈𝑁
𝐼𝑁𝑛𝑡 𝑝

𝑁𝑚𝑎𝑥
𝑛𝑡

]

(1a)

s.t. 𝑝𝑁
𝑚𝑎𝑥

𝑛𝑡 =
∑

𝑢𝑛𝑞𝑡𝑃
𝑁𝑚𝑎𝑥
𝑛𝑞𝑡 ∀𝑛 ∈ 𝑁, 𝑡 ∈ 𝑇 , (1b)
𝑞∈𝑄

3 
∑

𝑞∈𝑄
𝑢𝑛𝑞𝑡 ≤ 1 ∀𝑛 ∈ 𝑁, 𝑡 ∈ 𝑇 , (1c)

∑

𝑖∈𝐺
𝑝𝐸𝑖ℎ𝑡 +

∑

𝑛∈𝑁
𝑝𝑁𝑛ℎ𝑡 =

∑

𝑑∈𝐽
𝑃𝐷
𝑑ℎ𝑡 ∀ℎ ∈ 𝐻, 𝑡 ∈ 𝑇 , (1d)

0 ≤ 𝑝𝐸𝑖ℎ𝑡 ≤ 𝑃𝐸𝑚𝑎𝑥
𝑖𝑡 ∀ℎ ∈ 𝐻, 𝑖 ∈ 𝐺, 𝑡 ∈ 𝑇 , (1e)

0 ≤ 𝑝𝑁𝑛ℎ𝑡 ≤
∑

𝜏≤𝑡
𝑝𝑁

𝑚𝑎𝑥
𝑛𝜏 ∀ℎ ∈ 𝐻, 𝑛 ∈ 𝑁, 𝑡 ∈ 𝑇 , (1f)

𝑝𝑁
𝑚𝑎𝑥

𝑛𝑡 ≥ 0 ∀𝑛 ∈ 𝑁, 𝑡 ∈ 𝑇 , (1g)

𝑢𝑛𝑞𝑡 ∈ {0, 1} ∀𝑛 ∈ 𝑁, 𝑞 ∈ 𝑄, 𝑡 ∈ 𝑇 , (1h)

where 𝑝𝑁𝑚𝑎𝑥
𝑛𝑡  is a non-negative decision variable to determine the capac-

ity to be built for the new generation unit 𝑛 in year 𝑡. The parameter 
𝑃𝑁𝑚𝑎𝑥
𝑛𝑞𝑡  denotes the potential investment block capacity 𝑞 for the new 
generation unit 𝑛 in year 𝑡. The binary variable 𝑢𝑛𝑞𝑡 determines which 
potential investment capacity 𝑞 will be considered for the new genera-
tion unit 𝑛 in year 𝑡. The non-negative decision variables 𝑝𝐸𝑖ℎ𝑡 and 𝑝𝑁𝑛ℎ𝑡
are the power output of existing generating unit 𝑖 and new generating 
unit 𝑛 for each hour ℎ in year 𝑡, respectively. The parameter 𝑃𝐷

𝑑ℎ𝑡 is the 
load of demand 𝑑 for each hour ℎ in year 𝑡; 𝐶𝐸

𝑖𝑡  is the production cost 
of existing generating unit 𝑖, while 𝐶𝑁

𝑛𝑡  is the production cost of new 
generating unit 𝑛 per year 𝑡, and 𝐼𝑁𝑛𝑡  represents the investment cost. 
The objective function (1a) refers to the total cost that encompasses 
generation and investment costs. Constraints (1b) define the capacity 
of new generation plants. Constraints (1c) ensure that at most one 
option is selected per year. Constraints (1d) establish the balance 
between generation and demand. Additionally, constraints (1e) and (1f) 
set limits on the power quantities supplied by existing and candidate 
generating units, respectively.

Since the 1950s, LP has been employed as a basic approach for 
GEP. By utilizing continuous variables, investment decisions were 
determined to fulfill power demand while considering budget con-
straints (Massé & Gibrat, 1957). However, operational limitations were 
not taken into account in these early versions. Due to increased opera-
tional and technical constraints, the necessity of incorporating discrete 
decisions becomes apparent, resulting in MILP models (Gacitua et al., 
2018). The incorporation of integer variables in GEP led to a significant 
computational burden. Extensive research in the literature has studied 
the utilization of Benders decomposition for solving the GEP problem. 
Benders decomposition is a natural choice in the context of expansion 
planning. It decomposes the original problem into a master problem 
— associated with the investment decisions — and a subproblem—
associated with the operational problem, to evaluate the quality of 
investment trial decisions from the master problem. Originally pro-
posed for LP problems by Benders (Sinske & Rebennack, 2022), it 
has also been extended to mixed-integer master problems, non-convex 
master problems, convex subproblems — the so-called generalized 
Benders decomposition (Bloom, 1983; Geoffrion, 1972) — and gen-
eral non-convex problems (Füllner & Rebennack, 2022). As such, it 
is no surprise that extensive research has been conducted to utilize 
Benders decomposition for solving the GEP problem (Cote & Laughton, 
1979). Dynamic Programming has also been used for the capacity 
expansion problem (Caramanis et al., 1982). In order to address the 
uncertainty pertaining to GEP, stochastic dynamic programming (Mo 
et al., 1991) and the Dantzig–Wolfe decomposition (Sanghvi & Shavel, 
1986) have been utilized. Gorenstin et al. (1993) employed Benders de-
composition to address a two-stage stochastic planning problem, where 
sub-problems were solved by an earlier methodology of stochastic dual 
dynamic programming (SDDP). A selection of solution methodologies 
for solving expansion problems up to the 1990s are presented in Table 
1.

2.2.2. Transmission expansion planning—MILP, decomposition
Transmission expansion planning (TEP) seeks to determine the 

transmission network’s expansion decisions, including the timing, lo-
cations, and types of transmission lines in order to fulfill future energy 
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demand (Niharika et al., 2016). Its primary objective is to minimize 
the total costs, including investment, and operational cost, while en-
suring system stability, reliability, and compliance with regulatory and 
environmental requirements.

The formulation of a basic transmission expansion planning problem 
(as a MILP model) is provided below (Conejo et al., 2016), 

(𝑇 ) min
∑

𝑡∈𝑇

[

∑

𝓁∈𝐿
𝐼𝐿
𝓁𝑡𝑥

𝐿
𝓁𝑡 +

∑

ℎ∈𝐻

[

∑

𝑖∈𝐺
𝐶𝐸
𝑖𝑡 𝑝

𝐸
𝑖ℎ𝑡 +

∑

𝑑∈𝐽
𝐶𝐿𝑆
𝑑𝑡 𝑝𝐿𝑆𝑑ℎ𝑡

]

]

(2a)

s.t.
∑

𝑖∈𝐿𝑃

𝐼𝐿
𝓁𝑡𝑥

𝐿
𝓁𝑡 ≤ 𝐼𝐿,𝑚𝑎𝑥

𝑡 ∀𝑡 ∈ 𝑇 ,

(2b)
∑

𝑡∈𝑇
𝑥𝐿𝓁𝑡 ≤ 1 ∀𝓁 ∈ 𝐿𝑃 ,

(2c)
∑

𝑖∈𝐺𝑁

𝑝𝐸𝑖ℎ𝑡 −
∑

𝓁∣𝑠(𝓁)=𝑛
𝑝𝐿𝓁ℎ𝑡 +

∑

𝓁∣𝑟(𝓁)=𝑛
𝑝𝐿𝓁ℎ𝑡

=
∑

𝑑∈𝐽𝑁

(

𝑃𝐷𝑚𝑎𝑥

𝑑ℎ𝑡 − 𝑝𝐿𝑆𝑑ℎ𝑡
)

∀𝑛 ∈ 𝑁,ℎ ∈ 𝐻, 𝑡 ∈ 𝑇 ,

(2d)
𝑝𝐿𝓁ℎ𝑡 = 𝐵𝓁

(

𝜃𝑠(𝓁)ℎ𝑡 − 𝜃𝑟(𝓁)ℎ𝑡
)

∀𝓁 ∈ 𝐿𝐸 , ℎ ∈ 𝐻, 𝑡 ∈ 𝑇 ,

(2e)

𝑝𝐿𝓁ℎ𝑡 =
(

∑

𝜏≤𝑡
𝑥𝐿𝓁𝜏

)

𝐵𝓁

(

𝜃𝑠(𝓁)ℎ𝑡 − 𝜃𝑟(𝓁)ℎ𝑡
)

∀𝓁 ∈ 𝐿𝑃 , ℎ ∈ 𝐻, 𝑡 ∈ 𝑇 ,

(2f)
− 𝐹𝑚𝑎𝑥

𝓁𝑡 ≤ 𝑝𝐿𝓁ℎ𝑡 ≤ 𝐹𝑚𝑎𝑥
𝓁𝑡 ∀𝓁 ∈ 𝐿, ℎ ∈ 𝐻, 𝑡 ∈ 𝑇 ,

(2g)
0 ≤ 𝑝𝐸𝑖ℎ𝑡 ≤ 𝑃𝐸,𝑚𝑎𝑥

𝑖 ∀𝑖 ∈ 𝐺, ℎ ∈ 𝐻, 𝑡 ∈ 𝑇 ,

(2h)
0 ≤ 𝑝𝐿𝑆𝑑ℎ𝑡 ≤ 𝑃𝐷,𝑚𝑎𝑥

𝑑 ∀𝑑 ∈ 𝐽 , ℎ ∈ 𝐻, 𝑡 ∈ 𝑇 ,

(2i)
− 𝜋 ≤ 𝜃𝑛ℎ𝑡 ≤ 𝜋 ∀𝑛 ∈ 𝑁,ℎ ∈ 𝐻, 𝑡 ∈ 𝑇 ,

(2j)
𝑥𝐿𝓁𝑡 = {0, 1} ∀𝓁 ∈ 𝐿𝑃 , 𝑡 ∈ 𝑇 ,

(2k)

where 𝑥𝐿𝓁𝑡 is a binary variable to determine whether or not transmission 
line 𝓁 is built in year 𝑡. The non-negative decision variable 𝑝𝐸𝑖ℎ𝑡 refers 
to the generated power from unit 𝑖 for each hour ℎ in year 𝑡, and the 
continuous decision variable 𝑝𝐿𝓁ℎ𝑡 is the power flow through transmis-
sion line 𝓁 for each hour ℎ in year 𝑡. The non-negative decision variable 
𝑝𝐿𝑆𝑑  represents a load shedding and the parameter 𝑃𝐷𝑚𝑎𝑥

𝑑ℎ𝑡  is the load of 
demand 𝑑. The decision variable 𝜃𝑛ℎ𝑡 is the voltage angle at node 𝑛; 𝜃𝑟𝓁ℎ𝑡
is the voltage angle of the destination-end node of line 𝓁 and 𝜃𝑠𝓁ℎ𝑡 is the 
voltage angle of the sending-end node of line 𝓁. The parameters 𝐼𝐿𝓁𝑡, 𝐶𝐸

𝑖𝑡 , 
and 𝐶𝐿𝑆

𝑑𝑡  represent the investment cost of transmission lines, production 
cost of generating units, and load shedding costs, respectively. The 
parameter 𝐵𝓁 represents the susceptibility of line 𝓁, whereas 𝐹𝑚𝑎𝑥

𝓁𝑡  rep-
resents its capacity. The objective function (2a) seeks to minimize the 
total cost, including investment, operational and load-shedding costs. 
Constraints (2b) enforce that the investment cost in new transmission 
lines remains within the budget (𝐼𝐿,𝑚𝑎𝑥𝑡 ). Constraints (2c) ensure that 
transmission line 𝓁 can only be built at most once throughout the 
planning horizon. Eqs. (2d) force that the demand volume from all 
demand points at node 𝑛, including transfer volumes to and from node 
𝑛 and load shedding volumes, must balance with the generation from 
all units at node 𝑛. Equality constraints (2e) specify the power flows 
from the existing lines (𝓁 ∈ 𝐿𝐸). Equality constraints (2f) define the 
power flows from the prospective lines (𝓁 ∈ 𝐿𝑃 ) if a prospective line 
is invested in at time 𝑡 or during a previous time period 𝑡. Note that 
constraints (2f) are non-linear, but these are typically reformulated as 
linear inequalities by using a large enough constant 𝑀 . Constraints (2g) 
impose the bounds on power flow. Constraints (2h), (2i) and (2j) set 
limits on produced power, lost demand and voltage angles respectively.
4 
For transmission expansion planning, LP (Garver, 1970; Pereira 
et al., 1985) and dynamic programming (Dusonchet & El-Abiad, 1973) 
have been used since the 1970s. MILP was employed to address 
transmission expansion planning considering transmission losses, con-
gestion, and operational constraints (Latorre-Bayona & Perez-Arriaga, 
1994; Romero & Monticelli, 1994). Benders decomposition (Pereira 
et al., 1985; Romero & Monticelli, 1994) and heuristics (Latorre-Bayona 
& Perez-Arriaga, 1994) were used as well. Given that generation 
and transmission expansion planning are inherently connected, these 
problems can be jointly solved to achieve a reliable and robust solution 
for both transmission and generation facilities (Conejo et al., 2016); we 
discuss in Section 3.2.2.

2.2.3. Distribution expansion planning—MILP
The distribution system is an integral part of the power system, 

connecting transmission facilities and end-consumers. Distribution ex-
pansion planning (DEP) pertains to determining the optimal expansion 
strategies for the components of the distribution system, i.e., substations 
and feeders. A collection of substations in the distribution system are 
coupled with each other by feeders. That is, ensuring sufficient substa-
tions’ and feeders’ capacity is a requirement for distribution expansion 
planning (Khator & Leung, 1997). The aim of distribution expansion 
planning is to minimize total cost, encompassing investment, fixed, 
operation and energy loss costs, subject to operational and network 
constraints. In the literature, MILP, NLP, and LP are most commonly 
used to tackle the distribution expansion planning problems.

The general formulation of a distribution expansion planning prob-
lem as a MILP model can be represented as follows (Sun et al., 1982), 
(𝐷) min

∑

𝑖∈𝐺

∑

𝑗∈𝐵

(

𝐶𝑉
𝑖𝑗 𝑝𝑖𝑗 + 𝐶𝐹

𝑖𝑗 𝑦𝑖𝑗
)

(3a)

s.t.
∑

𝑗∈𝐵
𝑝𝑖𝑗 = 𝑆𝑖 ∀𝑖 ∈ 𝐺, (3b)

∑

𝑖∈𝐺
𝑝𝑖𝑗 = 𝐷𝑗 ∀𝑗 ∈ 𝐵, (3c)

0 ≤ 𝑝𝑖𝑗 ≤ 𝑈𝑖𝑗𝑦𝑖𝑗 ∀𝑖 ∈ 𝐺, 𝑗 ∈ 𝐵, (3d)

𝑦𝑖𝑗 ∈ {0, 1} ∀𝑖 ∈ 𝐺, 𝑗 ∈ 𝐵, (3e)

where 𝑦𝑖𝑗 is a binary variable to determine whether the feeder 𝑖𝑗 is built 
or not. The non-negative decision variable 𝑝𝑖𝑗 is the power flow from 
supply node 𝑖 ∈ 𝐺 to demand node 𝑗 ∈ 𝐵. The objective function (3a) 
minimizes the total cost that incorporates operational (𝐶𝑉

𝑖𝑗 ) and invest-
ment costs (𝐶𝐹

𝑖𝑗 ) of feeders. Constraints (3b) ensure that the total power 
flow from each supply node 𝑖 to all demand nodes equals the available 
capacity 𝑆𝑖 at that supply node 𝑖, while constraints (3c) enforce that the 
total power flow to each demand node 𝑗 equals the demand 𝐷𝑗 at that 
demand node 𝑗. Constraints (3d) are bound on the power flow through 
feeder 𝑖𝑗, depending on whether the feeder 𝑖𝑗 is built or not.

Starting in the 1970s, LP has been used for distribution expansion 
planning. Crawford and Holt (1975) addressed the substation location 
program using LP. Wall et al. (1979) introduced a linear transship-
ment model to find the optimal solution of the distribution expansion 
problem. In Thompson and Wall (1981), a MILP model for distribution 
planning was solved by a branch-and-bound algorithm. Aoki et al. 
(1990) presented a ‘‘branch-exchange’’ algorithm to handle a single 
period distribution planning problem. Quadratic programming and 
heuristic methods were also employed for the distribution expansion 
planning (Ponnavaikko et al., 1987).

2.3. Operation planning

Operational planning is a mid-term optimization framework within 
power systems. During this phase, the planning aspects of maintenance 
for generators and transmission, fuel procurement, and hydro-thermal 
scheduling are considered. It is important to note that inaccurate 
decisions made in the mid-term time frame can have an impact on the 
operations, potentially leading to unfavorable outcomes.
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Table 1
A selection of solution methodologies for solving expansion problems up to the 1990s. 
 Method Reference GEP TEP DEP Comments  
 Linear Programming Garver (1970)

Pereira et al. (1985)
No
Yes

Yes
Yes

No
No

Very restrictive, as no operational
constraints are considered.

 

 Mixed-integer
Linear Programming

Aoki et al. (1990) No No Yes Weak computational performance
due to the long planning horizon and
physical and operational constraints.

 

 Benders Decomposition Cote and Laughton (1979)
Pereira et al. (1985)

Yes
Yes

No
Yes

No
No

It guarantees an exact solution,
however it lacks performance for
multi-stage stochastic problem.

 

 Dynamic Programming Dusonchet and El-Abiad 
(1973)
Caramanis et al. (1982)

No

Yes

Yes

No

No

No

It has restrictions due to computational
and memory needs. It depends on
priority criteria in case of simplification.

 

 Stochastic Dynamic
Programming

Mo et al. (1991) Yes No No Dynamic equation is used but
there is a curse-of-dimensionality
for large-scale problems.

 

2.3.1. Fuel procurement—LP, MILP
Fuel procurement is a pivotal optimization problem for power pro-

ducers that depend on a primary fuel source for production. Given 
the significant cost escalations observed in fuel markets since the 
1970s (e.g., the oil price shock), fuel prices have become a crucial 
factor influencing the overall generation cost (Fancher et al., 1986). 
The objective of the fuel procurement problem is to minimize the 
overall cost, including transportation, procurement, storage, subject to 
technical, and operational constraints. Both the quality and quantity of 
fuel are essential requirements that must be satisfied. In this regard, a 
blending of same fuels type from the different sources is employed to 
ensure the quality level of the resulting fuel.

Fuel procurement is typically provided through two sources. The 
first involves take-or-pay agreements (fuel contracts), which compel 
power producers to secure only the necessary quantity. The second 
source is the spot market for short-term transactions, often associated 
with significantly higher costs. With respect to this, the fuel pro-
curement problem can generally be formulated (as an LP model) as 
follows (Sun et al., 2021): 

(𝐹 ) min
∑

𝑡∈𝑇

(

∑

𝑖∈𝑁
𝐶𝐶
𝑖 𝑔

𝐶
𝑖𝑡 + 𝐶𝑃

𝑡 𝑔
𝑃
𝑡

)

(4a)

s.t. 𝛽

(

∑

𝑖∈𝑁
𝑔𝐶𝑖𝑡 + 𝑔𝑃𝑡

)

≥ 𝐷𝑡 ∀𝑡 ∈ 𝑇 , (4b)

𝑁𝐶
𝑖 ≤ 𝑔𝐶𝑖𝑡 ≤ 𝑀𝐶

𝑖 ∀𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 , (4c)

0 ≤ 𝑔𝑃𝑡 ≤ 𝑀𝑃 ∀𝑡 ∈ 𝑇 , (4d)

where 𝐶𝐶
𝑖  is the fuel cost from contract 𝑖 while 𝐶𝑃

𝑡  is the fuel cost 
from the spot market for each time period 𝑡. For each time period 𝑡, 
the continuous variable 𝑔𝐶𝑖𝑡  is the purchased quantity from fuel contract 
𝑖, and the continuous variable 𝑔𝑃𝑡  is the purchased quantity from spot 
markets. The parameter 𝛽 is the fixed ratio from fuel to power. 𝑀𝐶

𝑖
and 𝑀𝑃  are upper bounds of purchased quantity from fuel contract 
𝑖 and the spot market, respectively. 𝑁𝐶

𝑖  is the minimum quantity to 
be purchased under the fuel contract. The aim of the model (4a) is to 
minimize the total cost by getting the fuel via take-or-pay agreement 
and spot markets. Constraints (4b) enforce that the output of power 
producers meets the total demand for each time 𝑡. Constraints (4c) and 
(4d) set limits for fuel purchased from fuel contract 𝑖 and the spot 
market, respectively.

The integration of fuel procurement and unit commitment leads 
to MILP models. Dynamic and linear programming (Van Meeteren, 
1984), and Lagrangian relaxation (Cohen & Wan, 1987) were employed 
to solve operation problems that address fuel constraints. The short-
term fuel scheduling can be modeled as a network flow optimization 
problem and solved through heuristic procedures (Kumar et al., 1984). 
Commonly, demand and fuel prices are treated as uncertain factors for 
this problem (Fancher et al., 1986).
5 
2.3.2. Maintenance of generation and transmission assets—MILP
The regular maintenance of transmission facilities and generators 

play a fundamental role in mitigating the risk of unforeseen faults. 
These faults have the potential to cause unexpected short-term op-
erational interruptions, impacting system reliability. Despite proac-
tive measures, transmission lines and generators may have break-
downs, leading to high operational costs and unmet power demand. In 
such cases, it becomes imperative to provide corrective maintenance 
promptly. In the context of a centrally operated system, the main-
tenance is scheduled centrally by taking into account comprehensive 
data, including costs, reliability and security details.

The generator maintenance scheduling (GMS) problem involves 
deciding when to halt operations for maintenance to ensure reliable 
operations, while minimizing associated costs. Binary variables are 
employed to determine the status of each generator within each time 
window. This discrete component transforms the GMS problem into 
a MILP problem. When its objective function primarily focuses on 
maintaining reliability and minimizing cost, considerations such as 
maintenance time window, demand, and network are treated as con-
straints (Froger et al., 2016). The transmission maintenance schedule 
(TMS) aims to establish the maintenance schedule for the lines of the 
system. It can be addressed either in conjunction with the GMS or 
independently.

The TMS problem can generally be formulated (as a MILP model) 
as follows (Sun et al., 2021): 
(𝑀) min

∑

𝑡∈𝑇

∑

𝑖∈𝐺
𝐶𝑖𝑝𝑖𝑡 (5a)

s.t.
∑

𝑖∈𝐺𝑁

𝑝𝑖𝑡 −
∑

𝑗∈𝐽𝑁

𝐷𝑗𝑡 −
∑

∀𝓁∣𝑠(𝓁)=𝑛
𝐵𝓁(𝜃𝑠(𝓁)𝑡 − 𝜃𝑟(𝓁)𝑡)

+
∑

∀𝓁∣𝑟(𝓁)=𝑛
𝐵𝓁(𝜃𝑠(𝓁)𝑡 − 𝜃𝑟(𝓁)𝑡) = 0 ∀𝑛 ∈ 𝑁, 𝑡 ∈ 𝑇 ,

(5b)
|𝐵𝓁(𝜃𝑠(𝓁)𝑡 − 𝜃𝑟(𝓁)𝑡)|

≤ 𝐹𝑚𝑎𝑥
𝓁𝑡 +𝐾𝑀

𝓁 𝑥𝓁𝑡 −𝐾𝐹
𝓁 𝑢𝓁𝑡 ∀𝓁 ∈ 𝐿, 𝑡 ∈ 𝑇 ,

(5c)
0 ≤ 𝑃 𝑚𝑖𝑛

𝑖 ≤ 𝑝𝑖𝑡 ≤ 𝑃 𝑚𝑎𝑥
𝑖 ∀𝑖 ∈ 𝐺, 𝑡 ∈ 𝑇 ,

(5d)
𝑥𝓁𝑡 ≤ 𝑥𝓁(𝑡+𝑣) ∀𝓁 ∈ 𝐿, 𝑡 ∈ {1,… , 𝑇 − 𝑉 + 1}, 𝑣 ∈ {1,… , 𝑉 − 1},

(5e)
𝑥𝓁𝑡 = 0 ∀𝓁 ∈ 𝐿, 𝑡 ∈ {𝑇 − 𝑉 + 2,… , 𝑇 },

(5f)
𝑥𝓁𝑡 ∈ {0, 1} ∀𝓁 ∈ 𝐿, 𝑡 ∈ 𝑇 ,

(5g)

where the continuous decision variable 𝑝𝑖𝑡 is the power output of gen-
erator unit 𝑖 for each time period 𝑡. The binary variable 𝑥  represents 
𝓁𝑡
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the planned maintenance for line 𝓁 for each time period 𝑡. The binary 
indicator 𝑢𝓁𝑡 refers to the existence of an interruption for line 𝓁 for 
each time period 𝑡, is typically defined as an uncertain parameter. The 
parameter 𝐶𝑖 is the generation cost per unit 𝑖; 𝐾𝑀

𝓁  reflects the increase 
in transmission capacity caused by preventive maintenance on line 𝓁, 
while 𝐾𝐹

𝓁  shows the reduced transmission capacity as a result of line 𝓁’s 
interruption. 𝜃𝑟𝓁𝑡 is the voltage angle of the destination-end node of line 
𝓁 for each time 𝑡 and 𝜃𝑠𝓁𝑡 is the voltage angle of the sending-end node of 
line 𝓁 for each time 𝑡. The parameters 𝐵𝓁 and 𝐹𝑚𝑎𝑥

𝓁𝑡  are susceptance and 
capacity of line 𝓁, respectively; 𝐷𝑗𝑡 is the load of demand point 𝑗. 𝑉  is 
the minimum duration of maintenance. The objective (5a) minimizes 
the total cost while satisfying the capacity constraints of generators 
(5d) and lines (5c), as well as demand requirements (5b). Constraints 
(5e) and (5f) set a minimum maintenance duration. Constraints (5b) 
require that the generation-demand balance be maintained at each 
system node. Constraints (5c) updates the capacity of the transmission 
line 𝓁 based on whether preventive maintenance was completed or if 
a failure occurred. The absolute value relations in constraints (5c) can 
be adjusted by splitting it into two constraints: 
−𝐵𝓁(𝜃𝑠(𝓁)𝑡 − 𝜃𝑟(𝓁)𝑡) ≤ 𝐹𝑚𝑎𝑥

𝓁𝑡 +𝐾𝑀
𝓁 𝑥𝓁𝑡 −𝐾𝐹

𝓁 𝑢𝓁𝑡 ∀𝓁 ∈ 𝐿, 𝑡 ∈ 𝑇 , (6a)

𝐵𝓁(𝜃𝑠(𝓁)𝑡 − 𝜃𝑟(𝓁)𝑡) ≤ 𝐹𝑚𝑎𝑥
𝓁𝑡 +𝐾𝑀

𝓁 𝑥𝓁𝑡 −𝐾𝐹
𝓁 𝑢𝓁𝑡 ∀𝓁 ∈ 𝐿, 𝑡 ∈ 𝑇 . (6b)

During this period (early years to the 1990s), dynamic programming 
was typically employed for solving the GMS problem. Since the 1970s, 
MILP has been used to model GMS and TMS problems (Dopazo & 
Merrill, 1975). In order to address the computational burden asso-
ciated with MILP, decomposition methods such as Lagrangian re-
laxation (Charest & Ferland, 1993), and Benders decomposition (Al-
Khamis et al., 1992) were mainly used in the literature. Heuristic meth-
ods (Charest & Ferland, 1993) and multi-objective optimization (Kralj 
& Rajaković, 1994) were also proposed.

2.3.3. Hydro-thermal scheduling—LP, MILP, NLP
Hydro power scheduling is essential to effectively manage power 

generation from hydro plants. It aims to minimize the total cost by 
determining decisions including reservoir level, water spillage and wa-
ter discharge, based on operational and environmental constraints. The 
Hydro-Thermal Scheduling problem (HTSP) manages power production 
from a combination of run-off-the-river and hydro reservoir plants as 
well as thermal plants. Thermal plants are strategically employed to 
compensate for fluctuations in hydro plants production due to uncertain 
water inflow, while ensuring the fulfillment of power demand. Note 
that hydro production has basically zero operational cost, if water is 
available. As such, the water has a future value, if left in the reservoir. 
There is an associated opportunity cost when using water for electricity 
production. This so-called water value depends on various factors, such 
as the reservoir size, reservoir levels, inflows, inflow uncertainty or 
thermal generation cost.

The HTSP typically requires an optimization horizon of at least 
one year to capture the seasonal variation of hydro inflows into the 
reservoir system. Due to the uncertain inflow, the HTSP is mainly 
modeled as a multi-stage stochastic problem. However, for the ease of 
presentation, we consider a deterministic formulation (as an NLP) of a 
basic HTSP as follows (de Queiroz, 2016): 

(𝐻) min
∑

𝑡∈𝑇

(

∑

𝑗∈𝐺
𝐶𝑇
𝑗𝑡𝑝𝑗𝑡 + 𝐶𝐿𝑆

𝑡 𝑢𝑡

)

(7a)

s.t. 𝑣𝑖,𝑡+1 = 𝑣𝑖𝑡 − 𝑥𝑖𝑡 − 𝑦𝑖𝑡 +
∑

ℎ∈𝐻𝑖

(

𝑥ℎ𝑡 + 𝑦ℎ𝑡
)

+ 𝐴𝑖𝑡 ∶ 𝜇𝑖𝑡 ∀𝑖 ∈ 𝐻, 𝑡 ∈ 𝑇 ,

(7b)
∑

𝑗∈𝐺
𝑝𝑗𝑡 +

∑

𝑖∈𝐻
𝑓𝑖𝑡 (𝑥, ℎ) = 𝐷𝑡 − 𝑢𝑡 ∀𝑡 ∈ 𝑇 ,

(7c)
𝑉𝑚𝑖𝑛 ≤ 𝑣𝑖,𝑡+1 ≤ 𝑉𝑚𝑎𝑥 ∀𝑖 ∈ 𝐻, 𝑡 ∈ 𝑇 ,
(7d)

6 
Fig. 2. Hydro system with four reservoirs (R1–R4) and run-off-the-river hydro plant.

𝑋𝑚𝑖𝑛 ≤ 𝑥𝑖𝑡 ≤ 𝑋𝑚𝑎𝑥 ∀𝑖 ∈ 𝐻, 𝑡 ∈ 𝑇 ,

(7e)
𝑃𝑚𝑖𝑛 ≤ 𝑝𝑗𝑡 ≤ 𝑃𝑚𝑎𝑥 ∀𝑖 ∈ 𝐻, 𝑡 ∈ 𝑇 ,

(7f)
with the decision variables 𝑝𝑗𝑡, 𝑦𝑖𝑡, 𝑥𝑖𝑡, 𝑣𝑖𝑡 and 𝑢𝑡. Here, these refer to 
generated power from thermal plant 𝑗, water spillage, water discharge, 
reservoir level for reservoir 𝑖, and unmet demand respectively. Set 𝐻𝑖
comprises the hydro plants situated directly upstream of reservoir 𝑖. 
The decision variable 𝑦ℎ𝑡 is the upstream water spillage, while 𝑥ℎ𝑡
represents upstream water discharge for all immediate upstream hydro 
plants. The parameter 𝐶𝑇

𝑗𝑡 represents the generation cost, while 𝐶𝐿𝑆
𝑡  is 

the load shedding cost; 𝐴𝑖𝑡 is the (uncertain) water inflow. The hydro 
system with four reservoirs is presented in Fig.  2. The power output is 
determined by the hydro production function, which is actually a non-
linear function of the water discharge (𝑥𝑖𝑡) and net water-head (ℎ𝑛𝑒𝑡𝑖𝑡 ). 
The hydro production function can be formulated as follow (Diniz & 
Maceira, 2008): 
𝑓𝑖𝑡 (𝑥, ℎ) = 𝜂𝜌𝑖ℎ

𝑛𝑒𝑡
𝑖𝑡 𝑥𝑖𝑡 (8a)

where 𝜂 is a fixed value (9.81×10−3) that includes gravity’s acceleration, 
water’s density, and a unit energy conversion factor. 𝜌𝑖 is the efficiency 
of the reservoir 𝑖 when converting turbined water into electricity. The 
net water-head ℎ𝑛𝑒𝑡𝑖𝑡  can be stated as follow; 
ℎ𝑛𝑒𝑡𝑖𝑡 = ℎ𝑓𝑖𝑡 (𝑣) − ℎ𝑡𝑎𝑖𝑙𝑖𝑡 (𝑦) − ℎ𝑙𝑜𝑠𝑠𝑖𝑡 (9a)

where ℎ𝑓𝑖𝑡 indicates the forebay level that relies on volume 𝑣𝑖𝑡, while 
ℎ𝑡𝑎𝑖𝑙𝑖𝑡  is the tailrace level, depending on the reservoir 𝑖 and water spillage 
𝑦𝑖𝑡; ℎ𝑙𝑜𝑠𝑠𝑖𝑡  refers to penstock head loss. The objective (7a) minimizes 
the total cost of power supply. Equalities (7b) enforce water balance 
and constraints (7c) represent demand balance. (7d)–(7f) establish the 
bounds for reservoirs level, water discharge of reservoirs and power 
generation of thermal plants. The dual value (𝜇𝑖𝑡) associated with (7b) 
are the water values for each stage 𝑡 and each reservoir 𝑖. We want to 
point out that most HTSP models consider a linear approximation of 
the hydro production function: 
𝑓𝑖𝑡 (𝑥, ℎ) = 𝑔𝑖𝑥𝑖𝑡 (10a)

with parameter 𝑔𝑖 specific to hydro production for hydro plant 𝑖.
For an in-depth discussion of the mathematical models proposed for 

reservoir management and operations in this period, we refer the reader 



A. Kaya et al. European Journal of Operational Research 329 (2026) 1–23 
to the review paper by Yeh (1985). Since the 1970s, stochastic dynamic 
programming has been utilized to solve HTSP (Grygier & Stedinger, 
1985; Yakowitz, 1982). However, several curses-of-dimensionalities 
(due to the exponential growth of the number of inflow scenarios with 
the considered stages 𝑇  and correlated reservoirs 𝐻) make solving 
large-scale problems intractable with stochastic dynamic programming. 
As a general guide, systems with more than 10 reservoirs can no longer 
be solved efficiently with stochastic dynamic programming methods. 
To mitigate the scalability issues of stochastic dynamic programming, 
Benders decomposition was proposed to solve multi-stage HTSP (Mor-
ton, 1996; Pereira & Pinto, 1985). SDDP was introduced by Pereira and 
Pinto (1991) as a sampled version of Nested Benders Decomposition 
(NBD). Finally, SDDP was the game changer to solve large-scale sys-
tems, even with more than 100 hydro plants. Since the 1990s, SDDP 
is the method-of-choice for solving large HTSPs. As mentioned, the 
hydro production function leads to a nonlinear hydro-thermal problem. 
Studies and modeling approaches are proposed in the literature to 
address the nonlinear hydro-thermal problem and we review these in 
Section 3.3.4.

2.4. Operations

2.4.1. Optimal power flow—NLP
The optimal power flow (OPF) is a classical optimization tool in 

power systems. Over the past fifty years, OPF has been an important 
and extensively researched nonlinear and non-convex optimization 
problem. It can be used effectively for decision making over a wide 
range of planning horizons from long-term planning to real-time ad-
justments (Wood et al., 2013). OPF extends the economic dispatch 
problem by considering power flows in the power system. The aim of 
the OPF problem is to determine active and reactive power output of 
each generator subject to system and power flow constraints (Conejo & 
Baringo, 2018).

The formulation of the classical optimal power flow problem dates 
back to the 1960s (Carpentier, 1962). It models Ohm’s and Kirchoff’s 
laws for a system in steady-state. We denote 𝑁 as a set of buses, 𝐿 as a 
set of branches, and 𝐺 as a set of generator units. The OPF model can 
be formulated as follows 
(𝑂) min

∑

𝑖∈𝐺
𝐶𝑖

(

𝑝𝐺𝑖
)

(11a)

s.t. 𝑃𝑖 (𝑉 , 𝛿) = 𝑝𝐺𝑖 − 𝑝𝐿𝑖 ∀𝑖 ∈ 𝑁, (11b)

𝑄𝑖 (𝑉 , 𝛿) = 𝑞𝐺𝑖 − 𝑞𝐿𝑖 ∀𝑖 ∈ 𝑁, (11c)

0 ≤ 𝑃𝐺,𝑚𝑖𝑛
𝑖 ≤ 𝑝𝐺𝑖 ≤ 𝑃𝐺,𝑚𝑎𝑥

𝑖 ∀𝑖 ∈ 𝐺, (11d)

𝑄𝐺,𝑚𝑖𝑛
𝑖 ≤ 𝑞𝐺𝑖 ≤ 𝑄𝐺,𝑚𝑎𝑥

𝑖 ∀𝑖 ∈ 𝐺, (11e)

0 ≤ 𝑉 𝐺,𝑚𝑖𝑛
𝑖 ≤ 𝑉 𝐺

𝑖 ≤ 𝑉 𝐺,𝑚𝑎𝑥
𝑖 ∀𝑖 ∈ 𝑁, (11f)

𝛿𝐺,𝑚𝑖𝑛
𝑖 ≤ 𝛿𝐺𝑖 ≤ 𝛿𝐺,𝑚𝑎𝑥

𝑖 ∀𝑖 ∈ 𝑁. (11g)

The aim of OPF model (11a)–(11g) is to minimize the total gen-
eration cost. The non-negative variable 𝑝𝐺𝑖  is the active power output 
of generator 𝑖, while 𝑞𝐺𝑖  is the reactive power output of generator 𝑖. 
Constraints (11b) are the power flow equations of active power, also 
called real power (𝑃 ), that refers the actual power flows, moving from 
generators to loads. Constraints (11c) are the power flow equation 
of reactive power (𝑄) which is related to voltage levels. Constraints 
(11d)–(11g) identify bounds for the capacity of the generators, the 
voltage range, and the power flow to ensure a balanced operation 
of the power system. Fig.  3 presents a small example OPF problem, 
illustrating the bus, branch, and load. This OPF model (11a)–(11g), 
including alternating current (AC) power flow Eqs. (11b)–(11c), is 
a nonlinear, non-convex continuous program, depending on the cost 
function 𝐶𝑖(⋅). AC power flow equations can be represented equivalently 
in both polar and rectangular forms. The polar form is connected to the 
voltage magnitude 𝑉 , voltage phase angle 𝛿, admittance 𝑌  and angle 𝜃
7 
Fig. 3. 3-bus system (Lesieutre et al., 2011).

of admittance. Constraints (11b)–(11c) can be formulated in the polar 
form as below (Frank et al., 2012a) 

𝑃𝑖 (𝑉 , 𝛿) = 𝑉𝑖

𝑁
∑

𝑘=1
𝑉𝑘𝑌𝑖𝑘 cos

(

𝛿𝑖 − 𝛿𝑘 − 𝜃𝑖𝑘
)

∀𝑖 ∈ 𝑁, (12a)

𝑄𝑖 (𝑉 , 𝛿) = 𝑉𝑖

𝑁
∑

𝑘=1
𝑉𝑘𝑌𝑖𝑘 sin

(

𝛿𝑖 − 𝛿𝑘 − 𝜃𝑖𝑘
)

∀𝑖 ∈ 𝑁. (12b)

Let us express voltage, 𝑉𝑖 = 𝐸𝑖 + 𝑗𝐹𝑖, and admittance, 𝑌𝑖𝑘 = 𝐺𝑖𝑘 + 𝑗𝐵𝑖𝑘, 
in rectangular coordinates. The real (𝐸𝑖 and 𝐺𝑖𝑘) and imaginary (𝐹𝑖
and 𝐵𝑖𝑘) components of power flow equations are separated using the 
imaginary unit j. Then, constraints (11b)–(11c) can be rewritten in the 
rectangular form as follows (Frank & Rebennack, 2016) 

𝑃𝑖 (𝐸, 𝐹 ) =
𝑁
∑

𝑘=1
𝐺𝑖𝑘

(

𝐸𝑖𝐸𝑘 + 𝐹𝑖𝐹𝑘
)

+ 𝐵𝑖𝑘
(

𝐹𝑖𝐸𝑘 − 𝐸𝑖𝐹𝑘
)

∀𝑖 ∈ 𝑁, (13a)

𝑄𝑖 (𝐸, 𝐹 ) =
𝑁
∑

𝑘=1
𝐺𝑖𝑘

(

𝐹𝑖𝐸𝑘 − 𝐸𝑖𝐹𝑘
)

− 𝐵𝑖𝑘
(

𝐸𝑖𝐸𝑘 + 𝐹𝑖𝐹𝑘
)

∀𝑖 ∈ 𝑁. (13b)

The resulting formulation (11a)–(11g) with (13a)–(13b) and a
quadratic cost function 𝐶𝑖(⋅) is a non-convex quadratically constrained 
quadratic program. The OPF model may incorporate additional factors 
such as contingency and security constraints, reserve requirements, 
renewable policy prerequisites, and stability constraints. Broadly speak-
ing, these extensions incorporate additional variables and some of 
them are discrete in nature, resulting in mixed-integer nonlinear prob-
lems (Skolfield & Escobedo, 2022).

The OPF problem has been widely addressed in the literature with 
numerous classic optimization methods to solve it (Frank et al., 2012a, 
2012b). The proposed approaches during this period (early years to 
the 1990s) do not guarantee global optimal solutions. The Reduced 
Gradient Method that is a gradient-based optimization method for 
solving large-scale OPF problems, uses the Jacobian matrix to compute 
the direction of the search at each iteration (Fernandes et al., 1980). 
Newton’s method (Sasson et al., 1973), which involves computing the 
Hessian matrix, and Quasi-Newton method (Housos & Irisarri, 1982), 
that utilizes the approximation of Hessian matrix, were studied. Inte-
rior point methods (Momoh et al., 1994), Sequential Linear Program-
ming (Alsac et al., 1990), Sequential Quadratic Programming (Burchett 
et al., 1984) were also used (Table  2). In recent years, significant efforts 
(e.g. convex relaxations) have been investigated to address and find 
global optimal solutions at least for special cases, which we discuss in 
Section 3.
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Table 2
A selection of solution methodologies for solving optimal power flow problems up to the 1990s. 
 Method Reference Capabilities Limitations  
 Gradient descent methods Fernandes et al. (1980) Jacobian matrix is used to compute

direction of the iteration search.
It is computationally expensive
due to slow convergence.

 

 Newton’s method Sasson et al. (1973) It converges faster than gradient
descent and can handle nonlinear
constraints more efficiently.

It requires computing the Hessian
matrix that can be computationally
expensive for large systems.

 

 Quasi-Newton methods Housos and Irisarri (1982) The approximation of Hessian
matrix is used.

The approximation of Hessian
matrix can be unable to provide
effective search directions.

 

 Sequential Linear Program Alsac et al. (1990) Solving nonlinear problems with a
sequence of linear subproblems.

It can find a local optima and lead
to oscillation.

 

 Sequential Quadratic 
Programming

Burchett et al. (1984) Providing better computational
performance than SLP.

It can find a local optima and lead
to oscillation.

 

 Interior Point Methods Momoh et al. (1994) Compared to traditional methods,
it is an efficient method with less
iterations and solution time.

It is dependent on initial values.  
2.4.2. Economic dispatch—LP, NLP
The economic dispatch (ED) problem aims at minimizing the cost of 

generating units by determining the generation outputs. The solution of 
the unit commitment problem (see Section 2.4.3) — which identifies 
the generation units that are online — serves as an input to the ED 
problem to determine the optimal output of each unit during the 
planning horizon. The ED problem was first formulated in the early 
1920s when the need of new methods for optimizing the economic 
allocation of power generation became apparent (Happ, 1977). The 
optimal dynamic dispatch problem, as an extension of static ED, was 
also developed to determine the optimal power outputs for a partic-
ular period of time. Ramp rate limits (Bechert & Kwatny, 1972) and 
reserve constraints (Wood, 1982) were considered in the ED problem. 
Because of increased environmental concerns, the ED models incor-
porated environmental constraints (Bernow et al., 1991). Given that 
the power output is generally considered to be a continuous variable, 
the ED problem is often expressed as a linear program. However, the 
ED problem was also studied as a nonlinear optimization problem. 
Nonlinearity in ED has been observed from several factors. Quadratic 
cost functions for the thermal plants (Reid & Hasdorff, 1973) and 
nonlinear expressions for the hydro production function (Luo et al., 
1989) resulted in a nonlinear optimization problem. A short-term oper-
ation planning for a combined thermal and hydroelectric power system 
with transmission losses was investigated (Chandler et al., 1953). Since 
network-constraint ED determines the output of generating units while 
conforming to power flow constraints on transmission lines, AC power 
flow equations also introduce nonlinearity. To linearize the power flow 
equations, network-constrained ED and dynamic ED were frequently 
presented with a DC power flow formulation (Pereira & Pinto, 1982; 
Podmore, 1974). The DC power flow is a simplified linear approxi-
mation of the AC power flow equations, assuming constant voltage 
magnitudes and phase angles. That is, it is effective in analyzing power 
flows in large transmission networks.

The objective of the ED problem is to determine the actual power 
output of each generator to fulfill demands at minimum cost, while 
satisfying the operational and technical constraints of the generating 
units. The ED problem is formulated (as an LP model) as below (Conejo 
& Baringo, 2018): 

(𝐸) min
∑

𝑡∈𝑇

∑

𝑖∈𝐺
𝐶𝑉
𝑖 𝑝𝑖𝑡 (14a)

s.t.
∑

𝑖∈𝐺
𝑝𝑖𝑡 = 𝑃𝐷

𝑡 ∀𝑡 ∈ 𝑇 , (14b)

0 ≤ 𝑃𝑚𝑖𝑛
𝑖 ≤ 𝑝𝑖𝑡 ≤ 𝑃𝑚𝑎𝑥

𝑖 ∀𝑖 ∈ 𝐺, 𝑡 ∈ 𝑇 , (14c)

where we consider a power system with G generation units. The 
non-negative decision variable 𝑝𝑖𝑡 is the actual power production of 
generator 𝑖 for each hour 𝑡 and the parameter 𝑃𝐷 represent the load 
𝑡
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for each hour 𝑡. The objective of the model (14a) is to minimize the 
generation cost while meeting balance Eqs. (14b) and bounds (14c).

Several linear optimization methods were used to solve the ED 
problem, such as the simplex method (Wang & Shahidehpour, 1994), 
interior-point methods (Irisarri et al., 1998), Lagrangian relaxation 
methods (Hindi & Ghani, 1991) and Dantzig–Wolfe decomposition
(Pereira & Pinto, 1982; Quintana et al., 1981).

2.4.3. Unit commitment—MILP
The unit commitment (UC) problem is a practically important and 

widely studied optimization problem in power system operations. It 
aims at determining the optimal schedule of generating units. In order 
to supply the aggregate demand during a certain planning horizon, 
typically one day, it seeks to identify which generation units should 
be scheduled to produce electricity, while satisfying their technical 
constraints (Anjos & Conejo, 2017). The UC problem emerged in the 
1940s as a result of the growth of the power industry (Li et al., 1997). 
Since the 1970s, the proliferation of computer technology and the 
escalating intricacy of power systems have led to the evolution of more 
complex UC problem models that integrated additional constraints, 
such as transmission constraints (Ma & Shahidehpour, 1998), fuel con-
straints (Cohen & Wan, 1987) and environmental constraints (Kuloor 
et al., 1992). Hence, UC models are becoming more sophisticated 
to ensure the reliability, efficiency, and sustainability of power sys-
tem operations. Therefore, the stochastic UC problem was extensively 
studied (Zheng et al., 2014). Deterministic UC focuses on fixed in-
puts for next-day scheduling, while stochastic models encompass also 
uncertainties within the same time frame (Bouffard et al., 2005).

The UC problem is typically formulated as a MILP model. The 
UC problem uses binary variables to represent the on/off status of 
units. To obtain a mixed-integer linear program, certain aspects of 
the formulation may be relaxed, for instance by using linearized cost 
functions. We consider a power system with 𝐺 generation units and 
a forecasted electricity demand 𝑃𝐷

𝑡  for each hour 𝑡 of the planning 
horizon 𝑇 . The objective of the UC problem is to minimize the total 
operating cost of the generation units while satisfying the demand and 
the system constraints.

The deterministic UC problem can be formulated (as a MILP model) 
as follows (Conejo & Baringo, 2018): 

(𝑈 ) min
∑

𝑡∈𝑇

∑

𝑖∈𝐺

(

𝐶𝐹
𝑖 𝑢𝑖𝑡 + 𝐶𝑉

𝑖 𝑝𝑖𝑡 + 𝐶𝑆𝑈
𝑖 𝑦𝑖𝑡 + 𝐶𝑆𝐷

𝑖 𝑧𝑖𝑡
)

(15a)

s.t. 𝑦𝑖𝑡 − 𝑧𝑖𝑡 = 𝑢𝑖𝑡 − 𝑢𝑖,𝑡−1 ∀𝑖 ∈ 𝐺, 𝑡 ∈ 𝑇 , (15b)

𝑦𝑖𝑡 + 𝑧𝑖𝑡 ≤ 1 ∀𝑖 ∈ 𝐺, 𝑡 ∈ 𝑇 , (15c)

𝑃 𝑚𝑖𝑛
𝑖 𝑢𝑖𝑡 ≤ 𝑝𝑖𝑡 ≤ 𝑃 𝑚𝑎𝑥

𝑖 𝑢𝑖𝑡 ∀𝑖 ∈ 𝐺, 𝑡 ∈ 𝑇 , (15d)

𝑝 − 𝑝 ≤ 𝑅𝑈 𝑢 + 𝑅𝑆𝑈𝑦 ∀𝑖 ∈ 𝐺, 𝑡 ∈ 𝑇 , (15e)
𝑖𝑡 𝑖,𝑡−1 𝑖 𝑖,𝑡−1 𝑖 𝑖𝑡
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Table 3
A selection of solution methodologies for solving unit commitment problems up to the 1990s.
 Method Reference Capabilities Limitations

 Mixed-integer
Linear Programming

Dillon et al. (1978) It guarantees an exact solution.
It increases modeling capability.

Inadequate computational performance
against the combinatorial nature and
physical and operational constraints.

 Exhaustive Enumeration Kerr et al. (1966) It guarantees an exact solution
for various optimization problems.

Impractical for large-scale systems.

 Priority Listing Shoults et al. (1980) Simple, straightforward method
that can be easily implemented.

It is dependent on the priority criteria
and the initial schedule.

 Dynamic Programming Pang et al. (1981) It is used to solve subproblems
in the decomposition scheme.

It has restrictions due to computational
and memory needs.

 Benders Decomposition Turgeon (1978) Decomposing the original problem
into easier-to-solve subproblems.

Lack of performance for large cases
due to slow convergence.

 Lagrangian Relaxation Zhuang and Galiana (1988) Decomposing the original problem
and relaxing certain constraints.

Dependent on the formulation of
problem and the multipliers selection.
𝑝𝑖,𝑡−1 − 𝑝𝑖𝑡 ≤ 𝑅𝐷
𝑖 𝑢𝑖𝑡 + 𝑅𝑆𝐷

𝑖 𝑧𝑖𝑡 ∀𝑖 ∈ 𝐺, 𝑡 ∈ 𝑇 , (15f)
∑

𝑖∈𝐺
𝑝𝑖𝑡 = 𝑃𝐷

𝑡 ∀𝑡 ∈ 𝑇 , (15g)

𝑝𝑖𝑡 ≥ 0 ∀𝑖 ∈ 𝐺, 𝑡 ∈ 𝑇 , (15h)

𝑢𝑖𝑡, 𝑦𝑖𝑡, 𝑧𝑖𝑡 ∈ {0, 1} ∀𝑖 ∈ 𝐺, 𝑡 ∈ 𝑇 , (15i)

with the decision variables 𝑢𝑖𝑡, 𝑝𝑖𝑡, 𝑦𝑖𝑡 and 𝑧𝑖𝑡. Here, the binary variable 
𝑢𝑖𝑡 indicates whether a generating unit 𝑖 is online in time period 𝑡. The 
non-negative decision variable 𝑝𝑖𝑡 is the power output of generating unit 
𝑖 during time period 𝑡. 𝑦𝑖𝑡 and 𝑧𝑖𝑡 are binary variables to represent start-
up and shut-down decisions, respectively. The parameters 𝑅𝑈

𝑖 , 𝑅𝐷
𝑖 , 𝑅𝑆𝑈

𝑖
and 𝑅𝑆𝐷

𝑖  are ramping limits. These limits correspond to the generating 
units’ ramping up, ramping down, start up and shut down, respectively. 
The objective function (15a) aims to minimize the total cost, including 
fix (𝐶𝐹

𝑖 ), variable (𝐶𝑉
𝑖 ), start-up (𝐶𝑆𝑈

𝑖 ), and shut-down (𝐶𝑆𝐷
𝑖 ) costs. 

Constraints (15b)–(15c) impose that shutdown is only possible for 
online thermal generating units, while startup is only permissible for 
offline units. Constraints (15d) enforce the bounds on the power output 
of generating units, and constraints (15e)–(15f) refer to ramping limits. 
Equality constraints (15g) ensure that the output of generating units 
meets the total demand at each time period.

Numerous algorithms have been developed in the past five decades 
to solve the UC problem, including exact methods, (meta-)heuristic 
and hybrid algorithms. In the late 1970s and early 1980s, dynamic 
programming emerged as a tool for solving the UC problem. Dynamic 
programming methods can handle complex constraints and allowed for 
the inclusion of multiple operating conditions and system states (Pang 
et al., 1981). In response to the computational limitations ‘‘curse-
of-dimensionality’’ of dynamic programming, from the early 1980‘s, 
the Lagrangian relaxation (Zhuang & Galiana, 1988), Benders decom-
position (Turgeon, 1978) and branch-and-bound (Turgeon, 1977) al-
gorithms were proposed. These methods reduce the computational 
burden by decomposing the original problem into subproblems and 
solving them sequentially. The efficacy of Lagrangian relaxation tech-
nique largely depends on the selection of appropriate updating rules 
for the Lagrange multipliers and on the formulation of the prob-
lem itself (Virmani et al., 1989). Within a Lagrangian decomposition 
scheme, dynamic programming was also utilized to solve each individ-
ual unit problem (with relaxed demand balance). In the 1990s, MILP 
approaches were proposed (Dillon et al., 1978). Table  3 presents a 
selection of methods to solving UC problems up until the 1990s.

As an important extension to UC, the network-constrained unit 
commitment (NCUC) problem was proposed in the 1980s. It extends 
the UC problem by incorporating the transmission network constraints. 
A NCUC problem can be seen as the combination of the UC and 
the ED problems. The objective of the NCUC problem is to obtain 
the optimal generation schedule that minimizes the total generation 
9 
cost subject to the transmission network constraints. Given the pres-
ence of AC constraints, currently, convex relaxation techniques like 
semidefinite and second-order cone formulations, along with decompo-
sition approaches, are predominantly employed to solve the NCUC and 
security-constrained unit commitment (SCUC) problems, as discussed 
in Section 3.4.

2.5. Control

Power systems need to keep the frequency and voltages at specified 
operational levels. Power system control is a dynamic process that 
optimizes and coordinates various control mechanisms for ensuring the 
stability of the entire power system (Gomez-Exposito et al., 2018). This 
section provides an overview of three critical aspects of power system 
control.

2.5.1. Frequency and reactive (optimal) control
In power systems, loads can fluctuate unpredictably, leading to 

undesirable deviations in the system frequency. These deviations may 
have a significant impact on power operations. Optimal frequency 
control aims to maintain the power system frequency within specified 
limits (Bevrani et al., 2021). The secondary frequency control, also 
known as Load Frequency Control (LFC), regulates the balance between 
generation and demand to address the frequency deviations. In the 
1970s, optimal control theory was employed for LFC. The control 
scheme takes into account the state variable representation of the 
model to provide feedback (Fosha & Elgerd, 1970). The integration of 
frequency control constraints into ED problem was initially suggested 
in the literature and limits (16a)–(16b) on reserve 𝑟𝑖 are ensured as 
follow (Cardozo et al., 2017) 
∑

𝑖∈𝐺
𝑟𝑖 ≥ 𝑅𝑚𝑖𝑛 (16a)

𝑟𝑖 ≤ 𝑅𝑚𝑎𝑥
𝑖 ∀𝑖 ∈ 𝐺. (16b)

The optimal reactive power control and the OPF problem are re-
lated concepts in power systems optimization. The reactive power is 
essential to keep voltage levels within acceptable limits and to provide 
the reliable operation. Optimal reactive control involves regulating 
the output of reactive power to minimize power losses and maintain 
voltage stability while satisfying demand and operational constraints. 
Typically, optimal reactive power control is a nonlinear optimization 
problem that can be formulated as follow (Khan et al., 2016) 

(𝐶) min 𝑃𝑙𝑜𝑠𝑠 + 𝜆𝑉
𝑁𝑉 ∗
∑

𝑖=1
(𝑉𝑖 − 𝑉 ∗

𝑖 ) + 𝜆𝑄

𝑁𝑄∗
∑

𝑖=1
(𝑞𝐺𝑖 − 𝑞𝐺∗

𝑖 ) (17a)

s.t. 𝑝𝐺𝑖 − 𝑝𝐿𝑖 − 𝑉𝑖

𝑁
∑

𝑉𝑘𝑌𝑖𝑘𝑐𝑜𝑠
(

𝛿𝑖 − 𝛿𝑘 − 𝜃𝑖𝑘
)

= 0 ∀𝑖 ∈ 𝑁, (17b)

𝑘=1
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𝑞𝐺𝑖 − 𝑞𝐿𝑖 − 𝑉𝑖

𝑁
∑

𝑘=1
𝑉𝑘𝑌𝑖𝑘𝑠𝑖𝑛

(

𝛿𝑖 − 𝛿𝑘 − 𝜃𝑖𝑘
)

= 0 ∀𝑖 ∈ 𝑁, (17c)

(11d)–(11g). (17d)

We note that this model is similar to the OPF model (see Section 2.4.1). 
The first term of the objective function refers to power loss. With the 
following formulation,

𝑃𝑙𝑜𝑠𝑠 =
𝑁
∑

𝑖=1
𝑝𝐺𝑖 −

𝑁
∑

𝑖=1
𝑝𝐿𝑖 ,

the power loss can be obtained. The second term aims to maintain 
voltage stability by considering the reference voltage (𝑉 ∗) and penalty 
cost (𝜆𝑉 ), while the third term is to regulate reactive power by using the 
reference reactive power (𝑄∗) and penalty cost (𝜆𝑄). Eqs. (17b)–(17c) 
are balance constraints. In the context of centralized framework, lin-
ear program, gradient method and interior point method are most 
commonly used for optimal reactive power control in the literature.

2.5.2. State estimation—NLP
State estimation seeks to identify the most likely ‘‘state’’ of the sys-

tem using redundant measurements. The outcome of the state estimator 
provides real-time information for various purposes such as security, 
control, and economic dispatch. The data for the state estimator include 
power flows, injections, and voltage measurements.

Since state estimation is a nonlinear programming problem, var-
ious techniques, including linear approximations, are employed. The 
weighted least squares (WLS) algorithm was introduced in the late 
1960s for static state estimation (Schweppe & Wildes, 1970). The 
primary concept in WLS is to enhance accuracy by minimizing the 
difference between predicted and actual values. Alternative methods 
have also been introduced, such as least absolute value, quadratic-
constant, quadratic-linear, least median of squares, and least trimmed 
of squares. Given its computational effectiveness and stability, WLS 
is predominantly used as a state estimator in the literature. Consid-
ering the concept of WLS, the state estimation problem is formulated 
as (Conejo & Baringo, 2018): 
(𝑆) min

∑

𝑘∈𝐾
𝑊𝑘

(

𝐻𝑘(𝑥1,… , 𝑥𝑆 ) −𝑍𝑘
)2 , (18a)

where 𝐾 is the set of measurements. 𝐻𝑘 is the function of the state vari-
ables, 𝑥1, . . . , 𝑥𝑆 , that are determined based on measurement 𝑘 ∈ 𝐾. 
𝑊𝑘 represents the weight of measurement 𝑘. 𝑍𝑘 are the measurements, 
including power flows, injections, and voltages. Decoupled algorithms 
were proposed (Garcia et al., 1979). An initial practical algorithm for 
the state estimator was provided (Allemong et al., 1982).

2.6. Forecasting

In a centralized framework, due to the absence of market dynam-
ics and the availability of limited renewable technologies, forecasting 
methods primarily focus on electricity demand and commodity prices. 
This section focuses on demand and price forecasting that are crucial 
for optimizing power generation, facilitating load management, and 
aiding in system planning and operation.

2.6.1. Demand and price forecasting—Time series and others
Knowing accurately the future demand plays a key role in making 

decisions, such as managing power generation, distributing load and 
other infrastructure. Demand forecasting is categorized into various 
horizons; short-term, medium-term and long-term. In a centralized 
framework, forecasting power demand mainly relied on historical load 
data and customer consumption patterns. Until the 1990s, power de-
mand forecasting mainly used linear approaches, with the assumption 
that past load patterns and relationships would continue to progress 
in a linear manner. The choice of linear models was influenced by 
their simplicity and suitability for calculations (Hernandez et al., 2014). 
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Demand forecasting is primarily centered on traditional methods rely-
ing on time series analysis. Additionally, qualitative techniques, such 
as expert assessment, were utilized. Multiple regression is an exten-
sion of linear regression, considering multiple independent variables, 
that aims at determining the connection between power load and 
independent variables such as weather conditions (Papalexopoulos & 
Hesterberg, 1990). Exponential smoothing was employed as well for 
load forecasting (Christiaanse, 1971). Several time series models, such 
as auto-regressive (AR), auto-regressive moving-average (ARMA), and 
auto-regressive-integrated-moving average (ARIMA) were commonly 
used for demand forecasting depending on the characteristics of the 
specific dataset and the underlying patterns in the time series. The 
ARIMA model is formulated based on three key components: autore-
gressive (AR), differencing, and moving average (MA). In the ARIMA 
model, forecasting values involves a mix of linear forms of previous 
values and historical errors. An ARIMA model can be expressed as 
follows (Box et al., 2015): 

𝑌𝑡 = 𝜙0 + 𝜀𝑡 +
∑

𝑝∈𝑃

(

𝜙𝑝𝑌𝑡−𝑝 − 𝜃𝑝𝜀𝑡−𝑝
)

, (19a)

where 𝑝 is the order lag of the time series. 𝑌𝑡 is the observed value at 
time 𝑡, 𝜀𝑡 is a random error term at time t, and 𝜙 are the autoregressive 
parameters, while 𝜃 are the moving average parameters. The goal here 
is to predict value 𝑌𝑡 from the past observations 𝑌𝑡−1, 𝑌𝑡−2,… , 𝑌𝑡−𝑝.

Since the 1970s, the forecasting of fuel prices has been important for 
power producers that rely on a fuel source for power production. Until 
the 1990s, oil, coal, and natural gas were the most heavily used fuels. 
The forecasting of fuel price was primarily conducted using traditional 
statistical methods. In particular, time series analysis models such as 
moving averages, and autoregressive models have been used.

3. Recent times—Decentralized (and centralized) operations and 
planning (1990-date)

3.1. Overview

In this section, we focus on the decentralized operations and plan-
ning from 1990 to the present. Additionally, we present recent method-
ologies for centralized operations and planning during the same time 
frame. From the 1990s onward, significant changes have occurred 
in many power systems around the world, including a transition to 
a liberalized market environment, a substantial increase in weather-
dependent electricity production, and advancements in energy stor-
age and control systems (Conejo & Sioshansi, 2019; Parker et al., 
2019). These changes increase the necessity for discrete decisions, 
nonlinearity, uncertain parameters and a decentralized structure in the 
optimization models. With the developments in operations research as 
well as advancements in computation capabilities, the utilization of 
MILP and MINLP has increased to solve complex problems (Achterberg 
& Wunderling, 2013). EPEC, MPEC and decentralized algorithms have 
been developed in response to the needs of a decentralized framework. 
Regarding the modeling of uncertainty, factors such as demand lev-
els, generation outputs, electricity and commodity prices have been 
considered uncertain during this period. Several methods, including 
stochastic optimization, robust optimization and fuzzy logic, are being 
explored (Roald et al., 2023; Weber, 2006). In particular, as computing 
machinery and software tools have evolved, certain approaches for 
multi-stage problems and advanced algorithms have being studied 
to consider uncertainty and risk factors simultaneously. Furthermore, 
advancements in optimization software, artificial intelligence and ma-
chine learning techniques played a pivotal role in ensuring the accuracy 
and efficiency of power system models. This section focuses on the main 
power systems problems — investment, operation planning, operations, 
control, and forecasting — in order to examine this period.
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3.2. Investment

The expansion planning in the centralized structure aims typically 
to either minimize the total cost or maximize social welfare. How-
ever, in the context of a decentralized framework, the objective of 
power companies is to maximize their profits via investment deci-
sions, considering expected future prices and earnings from potential 
investments (Chuang et al., 2001). Additionally, compared to early 
times (1970–1990s), the expansion planning — starting in the 1990s 
— encounters greater uncertainties, encompassing deviations in renew-
able power generation, demand growth, electricity and commodities 
prices (Botterud et al., 2005).

3.2.1. Investment in generation facilities by producers—MPEC, EPEC
In a decentralized structure, power producers participate in an 

energy market to maximize their profits by making optimal investment 
decisions. Given this objective, it aims to use market-clearing outcomes 
as short-term operation decisions to its advantage. Generation expan-
sion problems in the decentralized structure commonly use a bi-level 
model, where the upper level seeks investment decisions to optimize its 
profit and lower-level problems are to capture diverse market clearing 
scenarios (Conejo et al., 2016). Converting this bi-level model into an 
MPEC involves substituting lower-level problems by their optimality 
conditions (Kazempour et al., 2013). With the formulation of MPEC, 
each agent’s profitability is optimized while equilibrium constraints 
ensure the optimality conditions. EPEC is a broader formulation of 
investment problem that considers a series of connected MPECs to 
involve multiple power producers in a decision-making process (Conejo 
et al., 2020).

An MPEC of the generation expansion problem is formulated be-
low (Gabriel et al., 2012), 
(𝐼) min

∑

ℎ∈𝐻

[

∑

𝑖∈𝐺
𝐶𝐸
𝑖 𝑝

𝐸
𝑖ℎ +

∑

𝑛∈𝑁
𝐶𝑁
𝑛 𝑝𝑁𝑛ℎ

]

+
∑

𝑛∈𝑁
𝐼𝑁
𝑛 𝑝𝑁𝑚𝑎𝑥

𝑛 (20a)

s.t. 0 ≤ 𝑝𝑁𝑚𝑎𝑥

𝑛 ≤ 𝑃𝑁𝑚𝑎𝑥

𝑛 ∀𝑛 ∈ 𝑁, (20b)
{

∑

𝑖∈𝐺
𝑝𝐸𝑖ℎ +

∑

𝑛∈𝑁
𝑝𝐶𝑛ℎ =

∑

𝑑∈𝐽
𝑃𝐷
𝑑ℎ (20c)

0 ≤ 𝑝𝐸𝑖ℎ ≤ 𝑃 𝐸𝑚𝑎𝑥

𝑖 ∀𝑖 ∈ 𝐺, (20d)

0 ≤ 𝑝𝑁𝑛ℎ ≤ 𝑝𝑁𝑚𝑎𝑥

𝑛 ∀𝑛 ∈ 𝑁, (20e)

𝐶𝐸
𝑖 − 𝜆ℎ + 𝜇𝐸𝑚𝑎𝑥

𝑖ℎ ≥ 0 ∀𝑖 ∈ 𝐺, (20f)

𝐶𝑁
𝑖 − 𝜆ℎ + 𝜇𝑁𝑚𝑎𝑥

𝑛ℎ ≥ 0 ∀𝑛 ∈ 𝑁, (20g)

𝜇𝐸𝑚𝑎𝑥

𝑖ℎ ≥ 0 ∀𝑖 ∈ 𝐺, (20h)

𝜇𝑁𝑚𝑎𝑥

𝑛ℎ ≥ 0 ∀𝑛 ∈ 𝑁, (20i)
∑

𝑖∈𝐺
𝐶𝐸
𝑖 𝑝

𝐸
𝑖ℎ +

∑

𝑛∈𝑁
𝐶𝑁
𝑛 𝑝𝑁𝑛ℎ = 𝜆ℎ

∑

𝑑∈𝐽
𝑃𝐷
𝑑ℎ −

∑

𝑖∈𝐺
𝜇𝐸𝑚𝑎𝑥

𝑖ℎ 𝑃 𝐸𝑚𝑎𝑥

𝑖

−
∑

𝑛∈𝑁
𝜇𝑁𝑚𝑎𝑥

𝑛ℎ 𝑝𝑁𝑚𝑎𝑥

𝑛

}

∀ℎ ∈ 𝐻. (20j)

The GEP is the nested problem that can be decomposed into an upper-
level (investment problem) and lower-level (market clearing problem) 
problem. The primal–dual formulation is used for optimality conditions 
when developing an MPEC as single-level. Thus, we substitute the 
market-clearing problem with its primal constraints, dual constraints, 
and strong duality equality to develop an MPEC. 𝑝𝑁𝑚𝑎𝑥

𝑛  is the investment 
decision that correspond to the upper-level problem. 𝑝𝐸𝑖ℎ and 𝑝𝑁𝑛ℎ are 
the operational decision in the lower-level problem for each market 
condition at hour ℎ. 𝐶𝐸

𝑖  is the production cost of existing generating 
unit 𝑖 and 𝐶𝑁

𝑛  is the production cost of new generating unit 𝑛. 𝑃𝐷
𝑑ℎ is the 

load of demand 𝑑 for each hour ℎ. Eqs. (20j) are strong duality equali-
ties, requiring that the optimal values of the primal and dual objective 
functions for the market clearing problem are identical. Constraints 
(20c)–(20e) are primal constraints, while constraints (20f)–(20i) are 
dual constraints of the market clearing problem. We note that 𝜆ℎ is 
the dual value of the equality constraint (20c), also known as the 
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marginal market prices. 𝜇𝐸
𝑖ℎ and 𝜇𝑁

𝑛ℎ are indicated for the dual value 
of the inequality constraints (20d)–(20e).

Several methods for market-oriented GEP have been thoroughly in-
vestigated (Table  4). Moreover, there are advancements in handling un-
certainty in both centralized and decentralized structures. Baringo and 
Conejo (2011b) proposed MPEC for wind power investment decisions 
within the decentralized environment. Baringo and Conejo (2011a) 
introduced a Benders decomposition algorithm for considered MPEC 
to solve the wind power investment problem. A generation investment 
model under uncertainty was proposed to solve stochastic MPECs by 
utilizing Benders decomposition (Kazempour & Conejo, 2011). An EPEC 
model was proposed for investment equilibria in electricity and gas 
markets (Chen et al., 2020). Further models (MPEC, EPEC) can be found 
in Kazempour et al. (2010). Game theory (Lucas & Taylor, 1993) and 
agent-based simulation (Gnansounou et al., 2004) were also used for 
generation expansion problems in the decentralized structure. Within 
this period, there has been some development on a centralized-based 
approach. In Rebennack (2014), Benders decomposition was utilized, 
where the subproblems are multi-stage stochastic linear optimization 
problems solved by SDDP, in order to solve the hydro-thermal ex-
pansion planning problem. Bundle methods (Sagastizábal & Solodov, 
2012), robust optimization (Dehghan et al., 2013), generalized Benders 
decomposition (Liu et al., 2024), nested Benders decomposition (Lara 
et al., 2018; Yagi & Sioshansi, 2024) and stochastic dual dynamic inte-
ger programming (SDDiP) (Lara et al., 2020) were used for generation 
expansion problems (Table  4). Hinojosa and Velásquez (2016) provided 
a multi-stage generating capacity expansion planning problem with 
DC-based security constraints.

With the goal of capturing associated operational costs and con-
straints, operational problems are usually considered in investment 
problems. This results in large-scale models with short time resolution, 
increasing computational burden. There are some modeling efforts in 
the literature to handle investment problems with long planning hori-
zon and short time resolution. A multi-horizon modeling approach was 
proposed for expansion planning problem to reduce model size when 
compared to standard multi-stage formulations (Zhang et al., 2024). 
This approach is also capable of accounting for different levels of uncer-
tainty. In order to examine the short-term effects and uncertainties of 
operational problems, the representation of system operations was sim-
plified. As a result, representative time periods such as representative 
days (Lara et al., 2018) and representative weeks (De Sisternes et al., 
2016) were utilized in the investment problems instead of taking into 
account all time steps. Additionally, Merrick (2016) investigated how 
time-dependent variables are represented in power expansion planning 
models and assessed if utilizing representation time periods can mislead 
technology capacities. Ueckerdt et al. (2015) utilized residual load 
duration curves to integrate short-term fluctuations into long-term 
planning frameworks. Moreover, Kotzur et al. (2021) review various 
approaches to reduce the complexity of the power system models.

3.2.2. Investment in transmission and distribution facilities—MILP, MINLP
In a decentralized framework, an independent agent manages the 

operation and expansion of the transmission facilities. From this stand-
point, transmission expansion planning (TEP) is typically centralized, 
marking a key distinction between TEP and GEP in the decentralized 
framework. The aim of TEP is to minimize the total generation cost 
while increasing the reliability (Conejo et al., 2016). TEP is commonly 
formulated as MILP or MINLP. Research on decomposition methods 
has been studied in the literature. Garcés et al. (2009) proposed a 
TEP model as bi-level problem that is transformed to MILP problem 
by using duality theory. Escobar et al. (2008) introduced a TEP frame-
work tailored for a competitive electricity market, solved through the 
utilization of a genetic algorithm. Tor et al. (2008) introduced a TEP 
model that incorporates transmission congestion and the influence of 
investment decisions; Benders decomposition was employed to solve 
the model. Roh et al. (2007) involved incorporating the influence of 
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Table 4
A selection of solution methodologies for solving expansion problems.
 Method Reference GEP TEP DEP  Comments
 Mixed-integer
Nonlinear Programming

Alizadeh and Jadid (2015) Yes Yes No Insufficient computational performance
against the long planning horizon and
renewable constraints.

 Mathematical Programs
with Equilibrium Constraints

Baringo and Conejo (2011b)
Jenabi et al. (2013)

Yes
No

No
Yes

No
No

It considers equilibrium conditions
and interactions in power systems.
It is computational challenging.

 Equilibrium programs
with Equilibrium Constraints

Jin and Ryan (2013)
Chen et al. (2020)

No
Yes

Yes
No

No
No

It considers equilibrium conditions
and interactions in power systems.
It includes computational challenges.

 Benders Decomposition Tor et al. (2008)
Kazempour and Conejo (2011)

No
Yes

Yes
No

No
No

It guarantees an exact solution
however it lacks performance for
multi-stage stochastic problems.

 Progressive Hedge Munoz and Watson (2015) Yes Yes No Decomposing the original problem
but no guarantee for exact solution.

 Nested Benders
Decomposition (NBD)

Lohmann and Rebennack (2017)
Lara et al. (2018)

Yes
Yes

Yes
No

No
No

Decomposing the original problem.
Linear cutting planes are used. Curse-of
-dimensionality is partially broken.

 Stochastic Dual Dynamic
Programming (SDDP)

Rebennack (2014)
Hole et al. (2025)

Yes
Yes

No
Yes

No
No

It is a sampling variant of NBD.
Linear cutting-planes are used.
Statistical upper bound is obtained.
transmission security into generation planning. Lagrangian relaxation 
and Benders decomposition techniques are effectively utilized to break 
down the main problem into subproblems. Shortle et al. (2013) focused 
on minimizing blackout probabilities.

Although GEP aims to maximize the profit of each power pro-
ducer, it can be solved jointly with TEP from a centralized perspective 
to achieve the coordinated expansion of both transmission and gen-
eration facilities. Regarding transmission and generation expansion 
planning, Sharan and Balasubramanian (2012) proposed a comprehen-
sive model, and demonstrated the benefits of integrated generation and 
transmission expansion planning. Jenabi et al. (2013) explored bi-level 
programming for TEP, considering the behavior of power producers. Jin 
and Ryan (2013) introduced a tri-level model as EPEC problem for 
transmission and generation expansion planning. Munoz and Watson 
(2015) presented stochastic transmission and generation investment 
planning problems using Progressive Hedging. SDDP, with the first 
stage including expansion decisions, is used to solve the generation and 
transmission expansion planning problem (Hole et al., 2025).

3.3. Operation planning

In the context of a decentralized framework, conflicting interest 
between power producers and market operators exist. Whereas power 
producers increase their own profit, the market operator aims to main-
tain a reliable and secure system (Conejo et al., 2005). This nature has 
an impact on maintenance and hydro scheduling strategies, necessi-
tating a revision in terms of formulation and solution methodologies. 
Additionally, in operation planning, power producers and consumers 
seek mid-term trading in future markets to mitigate their risks. In this 
section, maintenance and hydro-thermal scheduling, energy trading 
models in future markets are reviewed.

3.3.1. Generation and transmission maintenance planning—MILP, EPEC
The maintenance scheduling is essential for ensuring the smooth op-

erations of the power system. Maintenance scheduling for the GMS and 
TMS must be carefully designed to ensure the security and reliability 
of the power system, considering the conflicting interests among power 
producers. GMS can be addressed either independently or along with 
the TMS. The decentralized structure typically incorporates the same 
constraints as the centralized structure. Additionally, market-based con-
straints such as policies, market requirements, and environmental con-
straints including emission level are encompassed in the decentralized 
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structure (Froger et al., 2016). Mainly, the maintenance planning fo-
cuses on economic objectives, aiming to maximize profit. Furthermore, 
environmental and reliability objectives can be considered.

A MILP approach is commonly employed to formulate the GMS 
problem. The coordination between power producers and the market 
operator for a generation maintenance plan should be provided to 
optimize producer profit and ensure reliability (Conejo et al., 2005). 
Benders decomposition with Lagrangian relaxation was used iteratively 
to solve the GMS problem, providing coordination and communication 
between power producers and the market operator (Geetha & Swarup, 
2009). Pandzic et al. (2012) solved yearly GMS in a market environ-
ment, formulated as an EPEC, with each producer’s problem expressed 
as an MPEC. Mazidi et al. (2018) developed a formulation for solving 
non-cooperative GMS using game theory, while addressing conflicts 
through bi-level optimization and Karush–Kuhn–Tucker conditions.

Marwali and Shahidehpour (1999b) introduced a decomposition 
method, based on a duality theory, for short-term scheduling of trans-
mission line maintenance. Generation and transmission scheduling for 
long-term were coordinated by utilizing Benders decomposition. Ad-
ditional constraints like fuel, network and emission constraints were 
incorporated (Marwali & Shahidehpour, 1999a). By using both dual 
and Benders decomposition, the large-scale problem was solved to coor-
dinate generation and transmission maintenance with hourly security-
constrained unit commitment (Fu et al., 2007). Benders decomposition 
with Lagrangian relaxation was used for both generation and transmis-
sion maintenance scheduling (Geetha & Swarup, 2009). Yearly TMS 
has been proposed as a bi-level model that is formulated into an 
MPEC (Pandzic et al., 2011).

3.3.2. Models for producers in futures markets (risk control)—SP
In the market environment, where electricity price serves as the 

primary determinant of supply and demand equilibrium, there are 
financial risks for both seller/buyer. Risk adjustments in real options 
are generally made by considering probability distributions through the 
incorporation of market price data (Nadarajah & Secomandi, 2023). 
In the power system, two distinct markets are considered for energy 
trading: a pool and a futures market. The pool includes a day-ahead 
market as well as shorter time scales, while the futures market enables 
electricity trading for longer periods (up to years). The futures market, 
characterized by lower volatility, may offer a lower average price for 
the producer. The pool price may be more favorable (higher or lower 
depending on the market positions), but it exhibits high volatility. 
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Therefore, the future market mitigates the impact of pool price volatil-
ity by hedging against the risks (Conejo et al., 2008). To determine 
the optimal hedging strategy considering price risk, various methods 
have been developed in the literature. Kaye et al. (1990) utilized for-
ward contracts as a strategy to mitigate the risk associated with profit 
volatility. Conejo et al. (2008) explored a power producer’s optimal 
engagement in the futures electricity market to hedge against pool 
price volatility, employing CVaR methodology for accurate risk mod-
eling. Bruno et al. (2016) presented investment planning for renewable 
energy under uncertainty using a forward contract as a hedging tool. 
A risk-averse multi-stage stochastic integer program was formulated, 
and solved by using SDDP. Peura and Bunn (2021) used game theory 
to examine the impact of renewable energy production on electricity 
prices with participation in the future market.

3.3.3. Consumer energy procurement (risk control)—SP
In the electricity markets, large consumers aim to minimize costs 

by utilizing power market, contracts, self-generation, renewables such 
as wind and solar technologies, energy storage systems and demand 
response for cost reduction (Nojavan et al., 2019). In particular, energy 
procurement strategies from electricity markets were studied to manage 
costs and hedge against price risks (Oum & Oren, 2010). In the litera-
ture, stochastic programming and robust optimization are mainly used 
to determine optimal energy procurement strategies against the price 
risk. The electricity procurement decision problem for a large consumer 
was addressed as a stochastic programming problem, incorporating risk 
aversion through CVaR methodology (Carrión et al., 2007). Zhang et al. 
(2018) introduced a multi-stage stochastic model for long-term elec-
tricity procurement and production planning, addressing uncertainty 
in product demand, and applied the progressive hedging algorithm to 
solve the model. Nojavan et al. (2019) suggested robust optimization to 
address electricity price uncertainty in solving an energy procurement 
problem formulated through MILP.

3.3.4. Hydro-thermal scheduling—SP
The transition to the market environment imposed an additional 

uncertainty to the HTSP, next to the inflow uncertainty: the electricity 
market prices. This poses the conceptual difficulty that the (water) 
value functions have a saddle-shape in the prices and water inflows. 
Thus, Benders-type cuts, as employed in SDDP, can no longer be di-
rectly applied. The earliest work in this context applied a discretization 
of the prices, leading to concave value functions (Gjelsvik et al., 2010); 
other approaches utilized saddle-cuts (Downward et al., 2020). The 
SDDP algorithm has been extended algorithmically in various different 
ways, for example, to deal with stage-wise dependence (Infanger & 
Morton, 1996; Lohmann et al., 2016), risk-aversion (Shapiro, 2011), 
𝐶𝑂2 emissions quotas (Rebennack et al., 2011), scenario trees (Reben-
nack, 2016), nonlinearities (Cerisola et al., 2012; Steeger & Rebennack, 
2017), integer variables (Zou et al., 2019), non-convexities (Füllner 
& Rebennack, 2022), parallel schemes (Machado et al., 2021) and 
distributionally robust multistage problems using the Wasserstein dis-
tance (Duque & Morton, 2020). Many of these extensions concern both 
centralized and decentralized systems. For an extensive discussion on 
SDDP and its many extensions, we refer to Füllner and Rebennack 
(2025).

Hydro plants participating in electricity markets have to decide on 
their optimal bidding strategies (Steeger et al., 2014). The presence 
of large power companies in combination with very significant hydro-
reservoir capacity leads to market power. In such a setting, the market 
bid can influence the market price (Flach et al., 2010; Steeger et al., 
2018; Steeger & Rebennack, 2017). If more than one price-maker is 
present in the system, then game-theoretic models are needed (Barroso 
et al., 2006; Steeger & Rebennack, 2015). SDDP has been the state-of-
the-art in solving HTSPs in both centralized and decentralized markets 
since the 1990s (Maceiral et al., 2018).
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The hydro production function is a nonlinear function of the water 
discharge and net water-head effect. This results in a nonlinear hydro-
thermal problem to provide more realistic representation of hydroelec-
tric power generation features. MILP models were developed using a 
linearization technique to consider the water-head effect (Borghetti 
et al., 2008). Nonlinear program (Catalao et al., 2008) and a multi-
dimensional piecewise linear model were also proposed to account for 
the water-head effect (Diniz & Maceira, 2008). In addition, the incor-
poration of additional renewable energy sources, such solar and wind 
power, into the hydro-thermal scheduling problem was studied in the 
literature. Since variable energy sources produce power intermittently, 
dependent on the wind and sunshine, these technologies can perfectly 
be combined with large storage like hydro plants. Several works were 
conducted on the integration of wind (Khodayar et al., 2013) and 
solar (Mari & Nabona, 2014) with hydro-thermal systems. For a more 
thorough examination of methods in recent decades, we refer to the 
review paper by Favereau et al. (2024).

3.4. Operations

Power markets are typically structured with a futures market for 
long-term trading and a pool for short-term trading. The pool comprises 
the day-ahead market, intraday markets (within some regions), and 
the real-time market. Additionally, a reserve market maintains energy 
balance with its future generation and consumption power, can also be 
considered as a day-ahead market. The optimization problems related 
to power operations discussed in this section predominantly relate 
to the short-term trading in the pool. Market clearing auctions are 
particularly applicable in European electricity markets, while UC and 
ED problems are more commonly used in the USA markets (Conejo 
et al., 2016).

3.4.1. Market clearing tools (unit commitment (in the US) and auctions (in 
the EU))—MILP, SP

In the European context, the market clearing mechanism operates 
in a decentralized framework. Power producers compete to sell the 
electricity they generate, while power consumers submit bids to pur-
chase electricity. By assessing offers from power producers and bids 
from power consumers, the market operator determines the output 
for each producer, demand for each consumer, and the market clear-
ing price while ensuring secure and reliable markets (Froger et al., 
2016). The market-clearing auctions are utilized by market operators 
for clearing the market (Galiana & Conejo, 2008). Typically, the fol-
lowing types of auctions are considered in the literature: single-period 
auctions, multi-period auctions, network-constrained single auctions, 
network-constrained multi-period auctions, and stochastic auctions.

Let us formulate a single-period auction (as an LP model) as fol-
low (Conejo et al., 2016) 

(𝐴) max
∑

𝑗∈𝐷
𝐶𝐷
𝑗 𝑝𝐷𝑗 −

∑

𝑖∈𝐺
𝐶𝐺
𝑖 𝑝

𝐺
𝑖 (21a)

s.t.
∑

𝑗∈𝐽
𝑝𝐷𝑗 =

∑

𝑖∈𝐺
𝑝𝐺𝑖 ∶ 𝜆, (21b)

0 ≤ 𝑝𝐷𝑗 ≤ 𝑃𝐷,𝑚𝑎𝑥
𝑗 ∀𝑗 ∈ 𝐷, (21c)

0 ≤ 𝑝𝐺𝑖 ≤ 𝑃𝐺,𝑚𝑎𝑥
𝑖 ∀𝑖 ∈ 𝐺, (21d)

where the non-negative decision variable 𝑝𝐺𝑖  represents the power 
output of power producer 𝑖 and the non-negative decision variable 𝑝𝐷𝑗
denotes the load of power consumer 𝑗. Power producer 𝑖 has 𝑃𝐺,𝑚𝑎𝑥

𝑖
capacity and 𝐶𝐺

𝑖  marginal cost, while power consumer 𝑗 has 𝑃𝐷,𝑚𝑎𝑥
𝑗

capacity and 𝐶𝐷
𝑗  utility cost. The objective function (21a) maximizes 

social welfare delineated by the shaded area in Fig.  4 (between the 
accepted consumption bids — blue line — and the accepted produc-
tion offers—red line). Constraints (21c) and (21d) impose bounds on 
demand and generation, respectively. Finally, constraint (21b) ensures 
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Fig. 4. Market Clearing Graph.

power balance. The market-clearing price (Fig.  4), corresponding to the 
dual value of constraint (21b), is denoted by 𝜆.

A MILP has been proposed to optimize the clearing process effi-
ciently, that is a day-ahead multi-period auction, while taking into 
account thermal plants technical restrictions (Arroyo & Conejo, 2002).
Motto et al. (2002) presented a MILP model that incorporates trans-
mission constraints, losses, and temporal operational limitations. Alter-
nating direction method of multipliers (ADMM) (Zhang & Giannakis, 
2015), dual decomposition (Okawa & Namerikawa, 2017), heuristic 
methods (Huse et al., 1999), bi-level programming (Fernandez-Blanco 
et al., 2011; Verma et al., 2024), interior-point algorithm (Rehfeldt 
et al., 2022), as well as Benders decomposition (Liang et al., 2017) are 
primarily utilized as solution methodologies for market clearing for-
mulations. Market clearing mechanisms under uncertainty are solved 
by using stochastic programming (Kazempour et al., 2018; Pritchard 
et al., 2010; Zavala et al., 2017) and robust optimization (Zugno & 
Conejo, 2015). Simulation and equilibrium models have also been 
utilized in electricity market applications, as detailed in Ventosa et al. 
(2005). Agent-based simulation is a well-suited method for capturing 
the dynamics of energy markets and clearing the market. Numerous 
agents can be incorporated to simulate local flexibility and power 
trading (Nunna & Srinivasan, 2017). Möst and Genoese (2009) used 
agent-based simulation to examine how market power is applied. Game 
theory approaches can analyze the interactions and strategic decision-
making of multiple players with the possibility of cooperation and 
competing objectives (Wang et al., 2014). Metzler et al. (2003) de-
veloped a Nash-Cournot equilibrium for the electricity market on a 
linearized DC network and investigated its properties. Moreover, an 
analysis of several approaches — perfect competition, Cournot model, 
bi-level approach — for modeling the electricity market is provided 
in Koschker and Möst (2016).

In the USA, unit schedules, generation dispatches and clearing 
prices are determined by solving optimization problems. That is, UC, 
ED, and security analysis are pivotal problems in the electricity markets 
across the USA. These problems can be integrated in various combi-
nations to address diverse challenges (Litvinov et al., 2019). Further 
details on their classical approaches are discussed in Section 2.4. How-
ever, in this section, we review recent methodologies for OPF, UC 
and ED that have been well-adapted to current needs and uncertain 
environment since the 1990s.

Given the recent developments, the OPF problem has become in-
creasingly complex due to the incorporation of additional constraints, 
such as involvement of reliability and security, the utilization of energy 
storage systems as well as the integration of advanced control devices 
and smart grid connection. The utilization of relaxation techniques 
and sparse matrix methods in conjunction with advanced algorithms 
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have facilitated the solution of increasingly complex OPF (Gomez-
Exposito et al., 2018). The direct current (DC) power flow algorithms 
utilize a linearization of the alternating current (AC) power flow and 
assumes the constant voltage magnitudes and phase angles by utilizing 
linear constraints (Alsac et al., 1990). Although a rapid solution might 
be provided by DC OPF, it has been noted that a global optimal 
solution might not be found in this approach (Kocuk et al., 2017). In 
order to obtain (approximate) global optimal solutions, various convex 
relaxations were investigated in the literature (Table  5). Semidefinite 
program (SDP) provides global optimal solutions for OPF problems 
under guaranteed exactness for special cases (Jabr, 2006). However, 
the exactness of SDP depends on the formulation and the network 
schedule; SDP imposes a computational burden for solving large-scale 
problems. Second-order cone program (Farivar et al., 2011) has been 
studied and has become one of the integral methods due to its lower 
computational cost compared to SDP. Several methods in the literature 
such as valid inequalities (Kocuk et al., 2016), cutting planes and con-
vex envelope were proposed to have strong SOC relaxation (Zohrizadeh 
et al., 2020). Convex quadratic relaxation (Hijazi et al., 2017) and 
LP relaxations (Bienstock & Munoz, 2014) were also proposed and 
it is noted that they can provide reduced computational cost over 
SDP. With due consideration of adequate conditions and the context 
of distribution networks, the exactness of convex relaxations continues 
to be under study (Kocuk et al., 2015; Low, 2014).

Recently, enhancing the reliability of electricity systems and inte-
grating the dynamic structure of the smart grid are trending challenges 
faced by UC (Skolfield & Escobedo, 2022). SCUC problem extends 
the unit commitment problem. SCUC is an optimization problem that 
schedules power generating units within a planning horizon to fulfill 
projected demand, while ensuring system security and compliance with 
transmission limitations. That is, the addition of scheduling constraints 
and limits imposed on system voltages and branch flows necessitates 
a power flow analysis for each time period. The existing studies on 
SCUC increases efforts to address the challenges posed by environ-
mental considerations, advanced control devices, smart grids and the 
integration of multiple energy systems, including power, natural gas, 
and heating (Badakhshan et al., 2019; Basu, 2013; Kargarian et al., 
2015; Liu et al., 2019, 2009; Yang et al., 2021).

The security-constrained AC unit commitment. An ideal SCUC model 
encompasses AC constraints for an accurate system representation. 
However, integration of AC constraints increases the complexity and 
difficulty of solving the SCUC model (Yang et al., 2021). There has been 
notable progress on SCUC solution methodologies. Because there are 
no efficient global optimization methods and due to the strength of the 
best relaxation methods, the current emphasis is on employing semidef-
inite program (Bai & Wei, 2009) and second-order conic program (Quan 
et al., 2014). A significant limitation of these methods is their in-
ability to ensure both optimality and AC feasibility (Constante-Flores 
et al., 2021). Decomposition techniques such as Benders decomposi-
tion (Constante-Flores et al., 2021; Fu et al., 2005b) were utilized to 
deal with large-scale problems.

The security-constrained DC unit commitment. Security assessment often 
involves using a simplified DC model in the SCUC problem, converting 
it into a MILP problem for computational efficiency. However it lacks 
explicit data on bus voltages and reactive power, and offers limited 
accuracy for power flow computations (Fu et al., 2013). In order to 
solve SCUC model with DC constraints, several optimization methods 
were proposed including Lagrangian relaxation (Merlin & Sandrin, 
1983), Benders decomposition (Gupta et al., 2019), Dantzig–Wolfe 
decomposition (Fu et al., 2005a), contingency-filtering scheme (Xavier 
et al., 2019) and a sequential method (Lee et al., 1994).

Stochastic unit commitment. Numerous research studies address the 
stochastic UC problem (Bouffard et al., 2005; Papavasiliou & Oren, 
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Table 5
A selection of solution methodologies for solving optimal power flow problems.
 Method Reference  Capabilities  Limitations  
 Semidefinite program Jabr (2006)

Bai and Wei (2009)
It can model a wide range of
of convex optimization problems.
A positive semidefinite constraint.

It can become computationally
expensive for large-scale problems.

 

 Second-order cone program Farivar et al. (2011)
Quan et al. (2014)
Kocuk et al. (2016)

It includes both linear and
second-order cone constraints
and handles nonlinear constraints.

It can still have limitations in
handling highly non-convex problems.

 

 Convex quadratic relaxation Hijazi et al. (2017) Approximating a non-convex problem
for various optimization problems.

Solution can be local for
the original non-convex problem.

 

2013). In general, two types of stochastic models, the two-stage stochas-
tic UC model and the multi-stage stochastic UC model, have been 
investigated. Wang et al. (2008) formulated the stochastic UC problem 
as a two-stage stochastic mixed-integer linear program, being solved 
by Benders decomposition. In order to solve multi-stage stochastic UC 
problems, stochastic dual dynamic integer programming (SDDiP) (Zou 
et al., 2018) was proposed. Although they show that the suggested 
approach may effectively tackle the multi-stage stochastic UC problems 
with a large number of scenarios, it is still impractical in real-world 
stochastic UC problems. Robust optimization (Guan & Wang, 2013) and 
stochastic dynamic programming (Analui & Scaglione, 2017) were also 
proposed in the literature. Xiong et al. (2016) introduced a distribution-
ally robust optimization model to solve UC problem with uncertainty 
in wind power generation. Singh et al. (2020) developed a chance-
constrained stochastic unit commitment model to deal with uncer-
tainty in renewable energy output. Esteban-Pérez and Morales (2023) 
proposed a distributionally robust chance-constrained OPF model.

3.4.2. Offering/bidding algorithms for producers/consumers—LP
Power producers and consumers as principal agents are participat-

ing in the market environment. Power producers determine production 
offers for each production unit, while power consumers decide their 
bids for their intended consumptions. Both agents in the electricity 
market submit their offers and bids for trading the energy. These offers 
and bids are assessed by market operator to clear the market, enabling 
the determination of the market clearing price (Section 3.4.1). Power 
producers struggle with the complicated task of identifying optimal 
offering strategies in the energy market. In the literature, the self-
scheduling problem was typically used. It can be formulated for power 
producer 𝑖 (as a MILP model) as follow (Conejo & Baringo, 2018) 

(𝐵) max
∑

𝑡∈𝑇

[

𝜆𝑡𝑝𝑖𝑡 −
(

𝐶𝐹
𝑖 𝑢𝑖𝑡 + 𝐶𝑉

𝑖 𝑝𝑖𝑡 + 𝐶𝑆𝑈
𝑖 𝑦𝑖𝑡 + 𝐶𝑆𝐷

𝑖 𝑧𝑖𝑡
)

]

(22a)

s.t. 𝑦𝑖𝑡 − 𝑧𝑖𝑡 = 𝑢𝑖𝑡 − 𝑢𝑖,𝑡−1 ∀𝑡 ∈ 𝑇 , (22b)

𝑦𝑖𝑡 + 𝑧𝑖𝑡 ≤ 1 ∀𝑡 ∈ 𝑇 , (22c)

𝑝𝑖𝑡 − 𝑝𝑖,𝑡−1 ≤ 𝑅𝑈
𝑖 𝑢𝑖,𝑡−1 + 𝑅𝑆𝑈

𝑖 𝑦𝑖𝑡 ∀𝑡 ∈ 𝑇 , (22d)

𝑝𝑖,𝑡−1 − 𝑝𝑖𝑡 ≤ 𝑅𝐷
𝑖 𝑢𝑖𝑡 + 𝑅𝑆𝐷

𝑖 𝑧𝑖𝑡 ∀𝑡 ∈ 𝑇 , (22e)

𝑃 𝑚𝑖𝑛
𝑖 𝑢𝑖𝑡 ≤ 𝑝𝑖𝑡 ≤ 𝑃 𝑚𝑎𝑥

𝑖 𝑢𝑖𝑡 ∀𝑡 ∈ 𝑇 , (22f)

𝑢𝑖𝑡, 𝑦𝑖𝑡, 𝑧𝑖𝑡 ∈ {0, 1} ∀𝑡 ∈ 𝑇 . (22g)

We note that model (22a)–(22g) is similar to the one explained in Sec-
tion 2.4.3. The main distinction is found within the objective function. 
The aim of power producer 𝑖 is to maximize its profit in the power 
market by obtaining optimal offers. In the objective function (22a), the 
first term, 𝜆𝑡𝑝𝑖𝑡, is the total revenue of power producer 𝑖, while the 
second term refers to its total cost.

Several methods have been used for optimal offering strategies in 
the literature. A MILP was proposed for optimal offering strategy of 
power producers (Simoglou et al., 2010). In the 1990s, a dynamic 
programming (David, 1993) and an analytical approach (Gross & Fin-
lay, 1996) were employed to solve optimal offering problems. Genetic 
algorithm (Richter & Sheblé, 1998), heuristic methods (Huse et al., 
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1999), game theory (Ferrero et al., 1997), Lagrangian relaxation (Zhang 
et al., 1999) were utilized to derive optimal offering strategies. Since 
the 2000s, optimal offering strategies in the pool-based markets have 
been explored under uncertainty, particularly with the penetration of 
renewable technologies and the energy storage systems. Given renew-
able technologies and storage, the optimal offering was formulated 
for the day-ahead (DA) market (Kim & Powell, 2011). A two-stage 
stochastic MILP model was used for a virtual power plant (VPP) to trade 
in the DA and balancing markets (Pandžić et al., 2013). A multi-stage 
stochastic model was considered for VPP to determine optimal offering 
in the discrete Intraday (ID) market (Wozabal & Rameseder, 2020). 
In particular, offering strategies became an integral point for hydro 
producers (Fleten et al., 1997; Steeger & Rebennack, 2015). Löhndorf 
et al. (2013) formulated the offering problem within the ID market as 
a multi-stage stochastic program, encompassing trading decisions and 
hydro storage operations. Optimal offering strategies of a hydro power 
producer in the DA market have been studied (Fleten & Kristoffersen, 
2007). Kaya et al. (2024) developed a multi-stage stochastic mixed-
integer formulation for renewable energy providers to participate in the 
reserve market and maximize their profits by utilizing intraday trading 
and batteries as hedging instruments.

Limited studies are found in the literature that addresses bidding 
strategies specifically for consumers. Various demand-side bidding 
structures within the electricity market are examined to explore its 
impact on all factors such as total cost or marginal prices (Strbac et al., 
1996). A demand bid generation method was proposed for buyers based 
on optimal allocation and the forecast price (Liu & Guan, 2003). A 
Monte Carlo-based algorithm was presented to address the challenges 
faced by consumers, having price sensitive demand, in determining 
optimal bidding curves within the day-ahead energy market (Menniti 
et al., 2009). A stochastic model was introduced to capture the strategic 
behavior of a large consumer and determine its strategic offers, and it 
was solved by a proposed heuristic approach to enhance computational 
efficiency (Kazempour et al., 2014).

3.5. Control

Power control is an important tool in the power systems to maintain 
the frequency and voltage within accepted limits. The decentralized 
framework, utilization of renewable technologies and storage systems 
and the development in the topology system led to changes in models 
as well as methodologies for frequency control and state estimation.

3.5.1. Frequency and reactive (optimal) control
The increased integration of renewables (specifically PV and wind 

technologies) in a power system has a significant impact on the tra-
ditional frequency control mechanism, typically modified by updating 
power generation to maintain the load stability. Renewable sources, 
specifically photovoltaic (PV) and wind technologies, can employ En-
ergy Storage Systems (ESS) to provide additional active power in 
situations of an imbalance (Fernández-Guillamón et al., 2019). Con-
cerning frequency control in wind technology, various methods exist, 
such as inertial response and de-loading technique. The de-loading 
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technique involves de-loading wind turbines, with pitch angle con-
trol (Wilches-Bernal et al., 2015) and speed control being the pri-
mary mechanisms. Inertia response typically involves the injection 
or extraction of power from the system to address frequency devia-
tions (Fernández-Guillamón et al., 2019). In order to ensure reliable 
and secure operations, frequency constraints have been incorporated 
into operation problems (Cardozo et al., 2017). ED problem with 
frequency control constraints (Doherty et al., 2005) and SCUC with 
frequency response constraints (Ahmadi & Ghasemi, 2014) have been 
proposed.

3.5.2. State estimation—NLP
Given the advancements in the topology technology and observation 

of power systems, the complexity of the state estimation problem has 
increased, resulting in a rise in nonlinear functions. Convex relaxation 
methods in the state estimation problem have primarily been employed 
to address these challenges since the 2000s. Furthermore, due to the 
transition to a decentralized structure, the utilization of decomposition 
algorithms are being increased. To address nonlinear functions, Gauss 
Newton method and Newton Raphson method were employed as initial 
methods. However, these methods do not guarantee a globally optimal 
solution. SDP relaxation was used in state estimation problem for 
nonlinear AC power system (Zhu & Giannakis, 2014). To address the 
non-convex state estimation problem, both SDP and SOCP relaxations 
were utilized with penalty terms (Zhang et al., 2017). A distributed 
state estimator was determined by solving a decomposition algorithm 
using the Auxiliary Problem Principle (Ebrahimian & Baldick, 2000). 
A decentralized state estimation method was introduced for multi-area 
power system, relying solely on border data exchange (Conejo et al., 
2007). Lagrangian relaxation decomposition technique was proposed 
for a decentralized state estimation (Caro et al., 2011).

3.6. Forecasting

Since the 1990s, with the transition to market-oriented systems and 
the growing adoption of renewable technologies in the power systems, 
demand forecasting methods have evolved to meet the changing needs 
of the market environment. Additionally, the significance of price and 
renewable production forecasting has increased for power producers 
and consumers.

3.6.1. Demand forecasting—Time series and others
The relevance of demand forecasting has grown in power markets. 

Power producers require reliable estimates of energy demand to for-
mulate their offers effectively. Inaccurate forecasting leads to either 
increased operational costs or diminished resource utilization. Time 
series models, including ARMA, ARIMA maintain their significance in 
demand forecasting for capturing historical patterns and seasonality 
in demand data. However, considering recent advancements such as 
demand response, market structure, and environmental considerations, 
nonlinear functions are mainly emerged in demand forecasting. To 
address these challenges, novel methods are being utilized for demand 
forecasting. Support vector machines have been proposed for data clas-
sification and regression (Chen et al., 2004). Artificial neural networks 
(ANN), fuzzy logic and evolutionary algorithms are emerging methods 
that have seen a growing utilization (Hahn et al., 2009).

3.6.2. Price forecasting—Time series and others
Price forecasting, in particular electricity and commodities such as 

CO2, has become a significant factor in the electricity markets for 
power producers and consumers (Möst & Keles, 2010). Market clearing 
prices are determined in the spot market by considering the submitted 
bids and offers from agents. Additionally, forward contracts are used 
to manage the risks associated with price changes. Price forecasting is 
essential for market participants to formulate their respective strate-
gies. For the purpose of price forecasting, it is crucial to identify the 
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price drivers, which can be categorized into the demand side and 
the supply side of the electricity market. An initial approach of price 
forecasting involves the use of linear regression. Day-ahead electric-
ity prices are forecasted using the Bayesian approach (Kostrzewski & 
Kostrzewska, 2019). Lasso Estimated AutoRegressive (LEAR) (Uniejew-
ski et al., 2016) and Deep Neural Network (DNN) (Lago et al., 2018) 
are considered as recent methods. LEAR is considered among machine 
learning and autoregressive techniques, while DNN is a deep learning 
method and use Bayesian optimization (Lago et al., 2021). Several 
methods were also introduced, including dynamic and fuzzy regres-
sion (Carrión et al., 2007), Artificial Neural Networks (ANN) (Keles 
et al., 2016), and Fourier and Hartley transforms (Nogales et al., 
2002). Ferrari et al. (2021) presented that dynamic sparse factor model 
outperforms machine learning methods in providing more accurate 
forecasts. Fundamental models were also proposed in the literature 
with the goal of considering the physical and economic relationships 
to forecast price curves over a longer time horizon (i.e., in the order 
of years). Data availability and the integration of stochastic processes 
of the fundamental drivers are considered the main challenges (Weron, 
2014). Howison and Coulon (2009) developed a fundamental model 
for electricity prices with a bid stack model, considering stochastic 
processes for the main factors that are responsible for determining the 
spot power prices. A stochastic bid stack model was utilized to trans-
form power demand and fuel prices into electricity prices (Carmona 
et al., 2013). Using a piecewise linear bid stack, Kallabis et al. (2016) 
developed a parsimonious fundamental model and found that emission 
prices surpass renewable penetration in impacting electricity prices.

3.6.3. Renewable production forecasting—Time series and others
The shares of renewable technologies have witnessed notable growth

in recent decades and solar and wind technologies have emerged as 
main components of the renewable energy sources in addition to hydro 
plants. Due to the increase of renewable penetration, the impact of out-
put from renewable energy sources on the market clearing prices have 
become increasingly apparent (Ringkjøb et al., 2018). With respect to 
this, the accurate forecasting of solar and wind power is crucial for 
ensuring reliable and effective operations. Given that renewable energy 
sources are primarily weather-dependent technologies, the forecasting 
of renewable power generation heavily relies on meteorological vari-
ables. Numerous methods are available for forecasting solar and wind 
energy. These are categorized into four groups such as physical, statis-
tical, computational and hybrid models (Hodge et al., 2018). Physical 
methods in renewable energy forecasting rely on physical data such as 
wind speed and solar radiation. By utilizing numerical data and satel-
lite images, physical methods forecast renewable energy generation. 
Traditional statistical methods, leveraging historical data, encompass 
AR, ARMA, and ARIMA models, as discussed in Section 2.5.1. With the 
advancements in computational methods, artificial neural network and 
support vector machine are being used.

3.6.4. Hydro inflow forecasting—Time series and others
The inflow of a hydro plants is a stochastic process that is uncertain 

and dependent on the weather conditions of the reservoir. Time series 
models such ARIMA, AR, and ARMA were employed for inflow forecast-
ing. Importantly, periodic autoregressive (PAR) (Maceira & Damázio, 
2006), spatial PAR (Lohmann et al., 2016) and seasonal ARIMA (Bender 
& Simonovic, 1994) were proposed in the literature to deal with shorter 
time resolutions and time-dependency. Machine learning methods such 
as support vector machine and artificial neural network (Yang et al., 
2017) and deep learning methods (da Silva et al., 2024) have also 
been used. We note that forecasting and scenario reduction are re-
lated, since scenario reduction involves reducing the range of potential 
future scenarios that may result from a forecast. Hence, scenario re-
duction approaches are needed to reduce the number of scenarios 
while maintaining as much the stochastic information as possible. 
Several approaches exist for scenario reduction—used in stochastic 
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Table 6
List of abbreviations. 
 Abbreviations Definition Abbreviations Definition  
 AC Alternating current MISOC Mixed-integer second-order cone  
 ANN Artificial neural networks MPEC Mathematical program with equilibrium constraints 
 AR Autoregressive NBD Nested Benders decomposition  
 ARIMA Autoregressive integrated moving average NCUC Network-constrained unit commitment  
 ARMA Autoregressive moving average NLP Nonlinear programming  
 DC Direct current OPF Optimal power flow  
 DEP Distribution expansion planning PAR Periodic autoregressive  
 ED Economic dispatch SCUC Security-constrained unit commitment  
 EPEC Equilibrium problems with equilibrium constraints SDDP Stochastic dual dynamic programming  
 ESS Energy storage system SDDiP Stochastic dual dynamic integer programming  
 GEP Generation expansion planning SDP Stochastic dynamic programming  
 GMS Generator maintenance scheduling SDP Semidefinite program  
 HTSP Hydro-thermal scheduling problem SOC Second-order cone  
 LEAR Lasso estimated autoregressive SP Stochastic programming  
 LFC Load frequency control TEP Transmission expansion planning  
 LP Linear programming TMS Transmission maintenance scheduling  
 MILP Mixed-integer linear programming UC Unit commitment  
 MINLP Mixed-integer nonlinear programming WLS Weighted least squares  
programming. A forward selection approach for scenario reduction 
that uses discrete probability distributions was proposed (Dupačová 
et al., 2003). Wasserstein distance-based scenario reduction (Rujeer-
apaiboon et al., 2022), importance sampling method (Papavasiliou & 
Oren, 2013) and backward selection approach (Heitsch & Römisch, 
2003) were also introduced. Moreover, the periodic structure of scenar-
ios in certain multi-stage stochastic problems has been used to reduce 
the number of stages, particularly in hydrothermal generation planning 
problems (Shapiro & Ding, 2020).

4. Future research directions

In recent years, operations research has seen notable progress in 
addressing non-convexity (Zohrizadeh et al., 2020). The AC power 
flow equations are one prominent example for non-convex, nonlinear 
models in power systems. Other examples are nonlinear head effects 
of hydro turbines, valve-point-effects of gas turbines, nonlinear charg-
ing, discharging and degradation of batteries as well as nonlinear 
emission curves. The utilization of discrete variables in combination 
with nonlinear functions leads to MINLPs, and MISOC models. This 
naturally occurs when incorporating OPF into MILP models, such as the 
UC model. The application of such nonconvex models for large-scale 
problems are of increasing interest. Consequently, efforts to enhance 
relaxation techniques and develop exact and heuristic (decomposition) 
algorithms are underway for getting reliable and robust solutions. 
However, solving real-world systems — which are of very large-scale 
— to proven global optimality for general systems are still a major 
research challenge.

The liberalized market structure introduces a challenging environ-
ment characterized by the market clearing process and the estab-
lishment of pricing mechanisms. This framework leads to separate 
objectives for each power producer and consumer, thereby leading 
to conflicting interests within the market. The studies on market en-
vironment have underscored the needs for handling a decentralized 
structure. Addressing these needs, EPEC and MPEC have been devel-
oped. However, there has been an increased necessity on employing 
decentralized and decomposition algorithms as a solution methodology 
in the recent literature.

The total costs in the electricity market including fixed cost and 
nonlinear cost function exhibit non-convex characteristics. Establishing 
optimal prices poses a significant challenge in the non-convex markets. 
Given marginal pricing mechanisms, power producers may not cover 
their costs in the non-convex markets, leading to the so-called ‘‘missing 
money’’ problem. Several price mechanisms have been proposed, focus-
ing on the short-term. There is a potential research area in integrating 
long-term capacity expansion with various pricing mechanisms (Byers 
& Hug, 2023).
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An increased penetration of intermittent suppliers into electricity 
markets with marginal prices causes increased problems. We are al-
ready observing times with negative prices, for example, in the German 
market. However, also marginal prices of zero will become the stan-
dard, when intermittent supplies — such as wind and solar — are 
having a large installed capacity and bidding at marginal cost of zero. 
Therefore, new market models are required. The new market models 
are expected to bring new challenging operations research problems.

Since the 1990s, the need for power systems optimization under 
uncertainty has risen. Increased penetration of renewables, managing 
uncertainty and risk factors, especially with detailed temporal and 
spatial information, has introduced complexity to the solution of large-
scale problems. In order to obtain robust and adaptive decision-making 
processes under uncertainty, the combination of different uncertainty 
models has recently emerged as a potential research area. For instance, 
methods from robust optimization, stochastic optimization, distribu-
tionally robust optimization and fuzziness have to be combined in 
unique ways to better capture the different nature of the uncertainties 
present. Next to the modeling challenge, solution algorithms have to be 
adjusted to cope with the new model structure.

The coupling of the electricity sector with other sectors, such as 
transportation (through electric vehicles), heating and cooling, as well 
as hydrogen (for storage) is also an emerging research area. The chal-
lenges are both on the modeling side as well as the solution algorithms. 
Real-world models are of massive size, when considering detailed 
models for multiple sectors, combined in one framework.

Power system problems are often characterized by repeated deci-
sions over a long-time horizon. For example, in investment problems, 
the operational problems can have hourly or even quarter-hourly res-
olution. This leads to tens of thousands of small models which are 
rather loosely coupled, for example, through ramping constraints or 
battery/water levels. Other examples of loosely coupled models are 
multi-area models, such as interconnected electricity grids of several 
areas. Algorithms, exploiting this loose coupling, are the most promis-
ing class of methods to tackle the real-world power system problems. 
Multi-horizon modeling is an efficient approach that decomposes the 
original problem into interstage and intrastage components, address-
ing different level uncertainties (Abgottspon, 2015). Algorithms using 
this modeling approach can produce significantly reduced model sizes 
compared to multi-stage stochastic programming approaches.

5. Conclusion

This paper reviews the evolution of power systems optimization 
over the last fifty years and focuses on the mainstream models and their 
solution methodologies. We conduct a review of two distinct periods 
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from 1970 to 1990 and from 1990 to the present. Both periods are 
discussed by considering power system problems such as control, oper-
ations, operation planning, investment and forecasting. The first period 
covers classical mathematical models and early solution methods for a 
centralized framework. The second period features recent optimization 
models and solution methodologies for both centralized and decen-
tralized structures. The evolution of the power system has undergone 
significant changes over the past fifty years, particularly in terms of 
technology, regulatory framework, and environmental considerations. 
In addition to the power system, important progress has occurred in 
the field of operations research and we observe how these develop-
ments influence the evolution of power systems optimization models. 
Finally, we present promising opportunities for the development and 
enhancement of power systems optimization methods.
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