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Abstract. We present a long-term power generation expansion planning model that
features a long planning horizon, an hourly time resolution, multiperiod investment
and retirement decisions, transmission constraints, start-up restrictions, and short-term
demand response. Demand response is the capability of power load to react to short-term
changes in electricity prices. It plays an increasingly important role in today’s electricity
markets but has not been taken into consideration in long-term power generation expan-
sion planning problems, which mostly treat demand as perfectly inelastic. Given mild
assumptions for the underlying demand function, the resulting model is a large-scale,
concave, linearly constrained maximization problem. We exploit the model structure by
developing a new approach to generalized Benders decomposition (GBD). In particular,
we present two algorithmic ideas: (1) solving the nonlinear Benders subproblem as a lin-
ear programming (LP) problem with the aid of dynamic linear overestimation, referred to
as the LP-basedmethod, and (2) directly calculating all necessary optimal primal and dual
variable values, referred to as the calculation-based method. We consider three special
cases of our expansion planning model and show that solving mathematical program-
ming problems can become entirely obsolete in the calculation-based method. We demon-
strate the efficiency of all proposed algorithms for the Texas power system, comparing
our tailored decomposition methods to a monolithic approach and a state-of-the-art GBD
implementation. Our LP-based method is up to 3,822 times faster than the monolithic
approach and up to 55 times faster than the GBD. The calculation-based method dramati-
cally improves the solution time, being an average factor of 20 faster than solving LPs and
107,074 times faster than the monolithic approach (for the largest solvable instance by a
commercial solver). The overall largest instance we solve, containing more than 79 million
variables and constraints, converges in less than one minute using the calculation-based
method. The modeling language GAMS and its latest features were used to efficiently
implement all algorithms.

History: Accepted by Yinyu Ye, optimization.
Supplemental Material: Data are available available at https://doi.org/10.1287/mnsc.2015.2420.

Keywords: power generation planning • convex nonlinear programming • Benders decomposition • short-term demand response •
Benders cut calculation • Texas power system

1. Introduction
Optimization problems in the power industry can be
characterized by their time horizon. Power control
problems typically span time horizons of seconds to
minutes, short-term optimization problems tend to
span several days to weeks, midterm optimization
problems can span several years, and long-term mod-
els consider several decades. Each of these models
has a different purpose. While short-term optimization
problems typically solve daily operation problems at
the power plant level, midterm models might provide
necessary information for the short-term models, e.g.,
water values for hydroelectric plants.
Long-term power generation expansion planning

models inform about strategic decisions and were

one of the first applications of linear programming
(LP) in the 1950s (Massé and Gibrat 1957). They
determine a least-cost capacity expansion plan for an
existing power system over a planning horizon of
20 years and longer. They are characterized by a fore-
casted (inelastic) demand or load that has to be met
by the power system. Thus, these models are typi-
cally used in the context of generation planning in a
monopoly. A review of these models is presented by
Anderson (1972).

With the changes in the power industry and the
electricity market, the focus has shifted from a cost-
minimizing to a profit-maximizing perspective (Hobbs
1995). Deregulation and competition play important
roles in today’s power industry. Often, electricity
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demand can not be assumed to be a fixed quantity,
because demand response programs allow consumers
to respond to electricity prices and adapt their
electricity consumption accordingly (Albadi and El-
Saadany 2008, Cappers et al. 2010). Consequently,
price-sensitive demand, also referred to as demand
response, needs to be incorporated into these models.
This allows the representation of a market in which
power producers are in competition with each other
to sell power to customers and, more importantly,
a system operator who has the ability to commu-
nicate demand peaks (i.e., high electricity prices) to
consumers in advance. Several authors have investi-
gated the impact of price-sensitive demand in a com-
petitive electricity market (Murphy and Smeers 2005,
Borenstein 2005, Bushnell 2010, DeJonghe et al. 2012).
Although their models consider some of the aspects of
hourly time resolution, none of them combines a long
time horizon with an hourly time resolution for a real-
istically sized power system in one integrated model
such as we propose in this paper.
Besides academic models, commercial long-term

generation expansion planning models are avail-
able and applied in both industry and the political
sector. We mention two prominent representatives.
The National Energy Modeling System (NEMS) (U.S.
Energy Information Administration 2015) by the U.S.
Department of Energy is an energy-economics model-
ing system, built on several modules, that allows the
projection of production, consumption, and prices of
energy for the United States over a 25-year horizon and
can further be used to analyze the impact of energy
policies. AURORAxmp (EPIS 2015) by EPIS Inc. is a
commercial electric sector model. It decomposes the
horizon into blocks of one week. Each block is first
solved as a unit commitment model and then as a dis-
patch model. AURORAxmp allows us to model a wide
range of features, including hourly market clearing,
a zonal or nodal market design, ramping restrictions,
and fixed demand. It can make investment decisions as
well as retirement decisions of generators.

We present a long-term power generation expan-
sion planning model, denoted as (PGEP), that consid-
ers short-term demand response; i.e., as the electricity
price increases, consumers reduce their demand. In
economic theory, this is equivalent to a downward
sloping demand function to represent the bidding
behavior of electricity consumers. We model the elec-
tricity market with an hourly time resolution, which
results in a large-scale problem that contains a market
clearance condition for each hour. The demand func-
tion leads to a (convex) nonlinear programming (NLP)
problem and, in the special case of a linear demand
function, to a quadratic programming (QP) problem
(DeJonghe et al. 2011b). Our expansion model is moti-
vated by a model of Fell and Linn (2013). We enhance

their model by using start-up restrictions for coal
and nuclear plants, transmission constraints, multi-
ple investment periods, investments in transmission
lines, and the option to decommission existing power
plants. Further, they use a genetic algorithm to solve
their expansion planning problem, which they termi-
nate after 24 hours of CPU time. In contrast, we pro-
pose a novel and tailored Benders decomposition-type
approach to solve for the optimal investment decision
that maximizes the welfare of the entire power system
with respect to general demand functions beyond a lin-
ear function. In this regard, our work can also be seen
as an extension of the work of DeJonghe et al. (2011b),
who discuss several ways to solve the long-term gener-
ation expansion planning problem that includes short-
term demand response.

The result is a stylized electricity market model that
features short-term demand response in a deregulated
market environment and can be applied to long time
horizons with detailed time resolutions. Given perfect
competition, the bid-based dispatch equals the central
dispatch. As such, central dispatching is a good proxy
when studying deregulated market environments, if
no player can execute market power (Gross and Finlay
2000). Effects of market power on the electricity market
are typically quantified by equilibrium models, e.g.,
Cournot and Bertrand models, and Stackelberg mod-
els (Bushnell 2003). Although it is not the focus of this
work, note that the purpose of our model is not to
perfectly forecast electricity prices but to describe the
impact of electricity policies and regulations on the
behavior of the system.

The application of Benders decomposition to the
power generation expansion planning problem in var-
ious forms has been widely studied in the literature.
Depending on the structure of the subproblem, either
classical Benders decomposition (Kim et al. 2011,
Baringo and Conejo 2011) or generalized Benders
decomposition can be applied (Bloom 1982, 1983;
Bloom et al. 1984). In our case, we decompose (PGEP)
into a master problem that contains the investment
and decommission decisions and a nonlinear subprob-
lem that contains the market clearing condition in each
hour. However, instead of applying general Benders
decomposition, we propose to dynamically linearize
the subproblem to obtain a more efficient solution
algorithm. Given certain assumptions for the demand
function, our subproblem is a convex NLP with lin-
ear constraints. Linearization of demand surplus in
the electricity market context has been studied before
(García et al. 1999), but not in combination with Ben-
ders decomposition.

In particular, with these mild assumptions for the
demand function, we can show that our algorithm
solves the expansion planning problem to proven opti-
mality for any given tolerance. We show how the
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special structure of our subproblem can be further
exploited and even allows us to compute the dual
variables needed for the Benders optimality cuts. Our
core model without start-up and transmission con-
straints can be decomposed and solved up to five
orders of magnitude faster than a monolithic model
with a state-of-the-art commercial solver. Given that
only small instances of the model can be solved as
a monolith because of time and memory restrictions,
we expect even greater factors for the large instances
this algorithm solves. If start-up and transmission con-
straints are present, the dual variables can be calcu-
lated for certain hours, improving the convergence
time of the Benders decomposition algorithm as well.
The unique contributions of this paper are the

following:
• We present a long-term generation expansion

planning model that features transmission constraints,
start-up restrictions, and demand response with an
hourly time resolution. Investment decisions, as well
as binary decommissioning decisions, are made on a
yearly basis.

• We propose several Benders decomposition ap-
proaches, including nested Benders decomposition
(NBD), which dynamically linearize the nonlinear
subproblem. Finite convergence and correctness of
the proposed decomposition algorithms are preserved
via a dynamic overestimation approach given certain
assumptions for the demand response function hold.
The resulting algorithms are up to 55 times faster than
a classical generalized Benders decomposition (GBD).

• We show how the structure of (PGEP)’s spe-
cial cases can be exploited by presenting methods to
explicitly calculate the necessary dual solution in the
subproblem to construct the Benders optimality cuts.
Solving linearized subproblems is no longer required,
which leads to very efficient algorithms. The resulting
algorithms are 20 times faster on average than the over-
estimation approach above and up to 876 times faster
than a GBD. Compared to the largest solvable instance
with a monolithic approach, this method is 107,074
times faster.

2. Long-Term Expansion Planning Model
We develop a long-term power generation expansion
planning model that can be used to evaluate energy
market regulations and policies. We want to obtain
insights on their impact both at an operational level
and at a strategic level, i.e., long-term investment and
retirement decisions. Therefore, a compromise in mod-
eling detail and computational tractability must be
achieved. The following list describes the key desired
features:

• Planning horizon of more than 20 years to capture
long-term trends and structural changes.

• Multiperiod investment and decommissioning
decisions of private independent power producers to

account for change in regulations and policies over
time.

• Representation of a competitive electricity whole-
sale market in which buyers of electricity face sellers.
Sellers are represented by supply bids, and a down-
ward sloping demand curve allows the incorporation
of short-term demand response.

• Detailed time resolution to capture daily demand
and supply patterns as well as interaction of renewable
generation sources and base-load generators such as
coal.

• Start-up restriction for coal generators to model
their inflexibility with regard to hourly shifts in load.

• Representation of transmission lines to model
zonal market prices and congestion.

The model presented in the following subsections
describes our approach to include the above features.
We discuss possible extensions at the end of this
section.

2.1. The Full Model
We begin by stating the notation:
Indices and Sets:

i ∈ 	 : all generators [-]
i ∈ 	EX : existing generators [-]
i ∈ 	N : new generators [-]
i ∈ 	R : generators with start-up restrictions [-]
i ∈ 	u : set of generators i belonging to bus u [-]
h ∈� : hours [-]

(h′, t′) ∈Aht : previous hour–year combination (h′, t′)
of hour h in year t [-, -]

t ∈ � : years [-]
t ∈ �I : years with investment [-]
u ∈ � : buses (zones; nodes) [-]

uv ∈Ω: transmission line from bus u to bus v [-]
Parameters:

β : discount factor [%]
Cih : capacity factor of generator i in hour h

[$/MWh]
cit : (marginal) generator cost of generator i in year

t [$/MWh]
ĉit : start-up cost of generator i in year t [$/MW]
FI

it : investment cost of generator i in year t
[$/MW]

FOM
i : operation & maintenance cost of generator i

[$/MW]
Fmax

uv : maximum transmission capacity of
transmission line uv [MWh]

FT
uvt : investment cost of transmission line uv in

year t [$/MW]
Ki : capacity of generator i [MW]

KT
uv : maximum capacity expansion of transmission

line uv [MW]
Pmin

i : minimum generation of generator i, if running
[MWh]

Pmax
i : maximum generation of generator i [MWh]
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Decision Variables:
δiht : (continuous) start-up of generator i in hour h of

year t [%]
γD

it : (binary)
0 if existing generator i is decommissioned

in year t ,
1 if existing generator i is online in year t

γN
it : (binary){

1 if new generator i is built in year t ,
0 otherwise

γT
uvt : (continuous) investment decision transmission

line uv in year t [%]
Quht : (continuous) electricity load at bus u in hour h

of year t [MWh]
qiht : (continuous) dispatch of generator i in hour h

of year t [MWh]
qL
iht : (continuous) per unit generation up to Pmin

i of
generator i in hour h of year t [%]

qU
iht : (continuous) per unit generation between Pmin

i
and Pmax

i of generator i in hour h of year t [%]
Puht : (continuous) inverse demand function of bus u

in hour h and year t [$/MWh]
xuvht : (continuous) transmission of line uv in hour h

of year t [MWh]

The long-termpower generation expansion planning
model (PGEP) reads as follows.

• Objective function (see Section 2.2)

W ∗
NLP

:�
{
max−

∑
t∈�I

β(t−1)
[∑

i∈	N
γN

it FI
it Ki +

∑
uv∈Ω

γT
uvtF

T
uvtK

T
uv

]
+

∑
t∈�
(β)t

[
−
∑
i∈	N

∑
t′∈�I
t′≤t

γN
it′F

OM
i Ki −

∑
i∈	EX

γD
it FOM

i Ki

+
∑
h∈�

(∑
u∈�

∫ Quht

0
Puht(x) dx

−
∑
i∈	

cit qiht−
∑
i∈	R

ĉit Kiδiht

)]}
. (1)

• Generator capacity bounds (see Section 2.3)

s.t. 0≤ qiht ≤ γD
it CihKi ∀ i ∈ 	EX , h ∈�, t ∈�, (2)

0≤ qiht ≤
∑
t′∈�I
t′≤t

γN
it′CihKi ∀ i ∈ 	N , h ∈�, t ∈�. (3)

• Start-up restrictions (see Section 2.4)

s.t. Pmin
i qL

iht + (Pmax
i −Pmin

i )qU
iht � qiht

∀ i ∈ 	R , h ∈�, t ∈ �, (4)
qL
iht − qU

iht ≥ 0 ∀ i ∈ 	R , h ∈�, t ∈ �, (5)

qL
iht − qL

ih′t′ ≤ δiht ∀ i ∈ 	R , h ∈�,
t ∈ �, (h′, t′) ∈Aht , (6)

δiht ≥ 0 ∀ i ∈ 	R , h ∈�, t ∈ �, (7)
0 ≤ qL

iht , qU
iht ≤ 1 ∀ i ∈ 	R , h ∈�, t ∈ �. (8)

• Transmission constraints (see Section 2.5)

s.t.
∑
vu∈Ω

xvuht −
∑
uv∈Ω

xuvht +
∑
i∈	u

qiht � Quht

∀ u ∈ �, h ∈�, t ∈ �, (9)
0 ≤ xuvht ≤ Fmax

uv +
∑
t′∈�I
t′≤t

γT
uvt′K

T
uv

∀ uv ∈Ω, h ∈�, t ∈ �, (10)
Quht ≥ 0 ∀ u ∈ �, h ∈�, t ∈ �. (11)

• Investment and decommissioning (see Section 2.6)

s.t. γD
it ≤ γD

i , t−1 ∀ i ∈ 	EX , t ∈ �, t ≥ 2, (12)∑
t∈�I

γN
it ≤ 1 ∀ i ∈ 	N , (13)∑

t∈�I

γT
uvt ≤ 1 ∀ u ∈ �, v ∈Ωu , (14)

γN
it ∈ {0, 1} ∀ i ∈ 	N , t ∈ �I , (15)
γD

it ∈ {0, 1} ∀ i ∈ 	EX , t ∈ �, (16)
0 ≤ γT

uvt ≤ 1 ∀ uv ∈Ω, t ∈ �I. (17)

2.2. Objective Function
The objective function (1) maximizes the welfare of
the system and can be divided into two parts: the dis-
counted hourly market clearing term∑
t∈�
(β)t

[∑
h∈�

(∑
u∈�

∫ Quht

0
Puht(x)dx−

∑
i∈	

cit qiht−
∑
i∈	R

ĉit Kiδiht

)]
,

which is described in Section 2.3, and the annual cost
terms. These are operation and maintenance costs for
new and existing generators

−
∑
t∈�
(β)t

[∑
i∈	N

∑
t′∈�I
t′≤t

γN
it′F

OM
i Ki +

∑
i∈	EX

γD
it FOM

i Ki

]
,

aswell as capital costs for investment in new generators
and transmission lines

−
∑
t∈�I

(β)(t−1)
[∑

i∈	N
γN

it FI
i Ki +

∑
uv∈Ω

γT
uvtF

T
uvKT

uv

]
.

Section 2.6 describes this component in detail. All terms
are discounted by a factor of β. This factor represents
the model’s combined assumptions on, among others,
inflation, equity structure, and taxes. For instance, for
the initial investment decision in year zero, it is used to
calculate that investment’s net present value of mone-
tary flows in future years.
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2.3. Market Clearing Condition
The market clearing mechanism of the electricity mar-
ket is the core component of (PGEP). For notational
convenience and without loss of generality, we drop
the time indices h and t and bus index u in this sec-
tion. For each hour and zone, demand function f is
defined as

Q � f (P). (18)

We assume f to be a continuously differentiable,
strictly monotonically decreasing function on [0,+∞);
i.e., for two prices P1 > P2, it follows that f (P1) � Q1 <
Q2 � f (P2). This implies that the first derivative f ′(x) is
nonzero for all x ∈ [0,+∞). Further, suppose f (x)� b.
Then, its inverse function f −1 exists at b and is contin-
uous and strictly monotonically decreasing. The exis-
tence of the inverse function f −1 enables us to rewrite
(18) equivalently in terms of quantity Q as the inverse
demand function

P � f −1(Q). (19)

Function f −1(Q) is more commonly referred to as
P(Q). The market clearance condition is depicted in
Figures 1–3.
The dashed lines show price P∗ and quantity Q∗ at

equilibrium for a given hour. The gray blocks sym-
bolize generators or, equivalently, supply bids. The
width of a block describes the respective generator’s
(effective) capacity; the height of a block describes the
respective generator’s marginal cost. The generators
are sorted in ascending order of their marginal cost
(from left to right); examples of generators with zero
marginal cost are wind or solar units.
The equilibrium price is determined by the running

generator with the highest marginal cost (Figure 1) or

Figure 1. Most Expensive Generator Defines Market
Clearing Price

�1
–

�2
–

�3
–

�4
–

�5
–Q*

Q

P(Q)

p*

p

Producer surplus

Consumer surplus

Figure 2. Available Capacity at Offered Price Defines
Market Clearing Price

�1
–

�2
–

�3
–

�5
––

Q* = �4

Q

P(Q)

p*

p

Producer surplus

Consumer surplus

by the total generation in the system in case demand
cannot be met, either because there is not enough
capacity at the offered price (Figure 2) or not enough
capacity in general (Figure 3). We avoid the case
depicted in Figure 3 by introducing an artificial gener-
ator with a sufficiently high marginal cost, resulting in
the case shown in Figure 2.

We are interested in computing the welfare, i.e., con-
sumer surplus plus producer surplus, at equilibrium.
The welfare is given by the area between the inverse
demand function and the gray blocks from 0 to Q∗,
as illustrated in Figures 1–3. We calculate the welfare
using the inverse demand function P(x), as defined
in (19); the electricity quantity at equilibrium Q∗; and

Figure 3. Available Capacity Defines Market Clearing Price

�1
–

�2
–

�3
– –

Q* = �4

Q

P(Q)

p*

p

Producer surplus

Consumer surplus
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the generators’ marginal cost ci through

W∗(Q∗) :�
∫ Q∗

0
P(x)dx −

∑
i∈	

ci q
∗
i , (20)

with the condition ∑
i∈	

q∗i � Q∗.

Next, for function W∗(Q), we establish the condi-
tions for which the function (i) exists, i.e., assumes a
finite value, and (ii) is concave. We require the con-
cave shape for our tailored Benders decomposition-
type approaches (see Section 3). Below, we argue that
the required assumptions are naturally met by the
application at hand.
For condition (i), we need the (lower) limit of the

integral

lim
Q1→0

∫ Q2

Q1

P(x)dx

to exist for any finite Q2. We are not concerned about
the existence of the limit for Q2→ +∞ because we can
always ensure a finite value for Q2 � Q∗ by adding
an artificial generator with a significantly high enough
marginal cost and effective capacity, as done for the
case depicted in Figure 3.
For condition (ii), consider the following.

Proposition 1 (Boyd and Vandenberghe 2004, Sec-
tion 3.1.4). Let f be a real function that is differentiable on
the open interval (a , b). Then, f is strictly concave on (a , b)
if and only if its derivative f ′ is strictly decreasing on (a , b).
Loosely speaking, Proposition 1 states that concav-

ity is equivalent to a (decreasing) negative slope. Per
our assumptions, we have that the inverse demand
function P(Q) is strictly decreasing (P(Q) assumes the
role of f ′ in Proposition 1). Thus, by Proposition 1,
W ∗(Q) in (20) is a concave function in Q on (0, b) for
any b > 0.
In summary, we assume that
A1: P(Q) is a strictly decreasing, continuous func-

tion, and that
A2: W ∗(Q) exists.

Table 1. Commonly Used Demand Functions and Their Properties

Name Q � f (P) P(Q)
∫

P(Q)dQ Parameters A1 A2

Linear Q � a − b · P P �
a
b
− Q

b
a
b

Q − Q2

2b
a > 0: intercept 3 3

b > 0: slope

Isoelastic Q � K · P−ε P �

(
Q
K

)−1/ε
εQ(Q/K)−1/ε

ε− 1 K: scale 3 (3)

ε > 0: elasticity (for ε >1)
Partial-log Q � a − b · log P P � e (a−Q)/b −be (a−Q)/b a > 0: intercept 3 3

b > 0: slope
Perfectly inelastic Q � c — Unbounded c: constant — —
Perfectly elastic — P � c cQ c: constant — 3

Table 1 contains a (nonexhaustive) list of commonly
used demand functions in economics. Demand with
a price elasticity ε between zero and one is consid-
ered inelastic and demand with ε > 1 is considered
elastic. Demand with ε � 1 is also called “unit elastic
demand.” Electricity wholesale markets are considered
to be inelastic or perfectly inelastic, depending on the
level of demand response in themarket. Themost com-
monly used functions to model short-term demand
response are linear and partial-log demand functions.
An application of the partial-log demand function can
be found in Bushnell (2010). Although the isoelastic
demand function is not suited for the electricity mar-
ket context for ε > 1, it satisfies assumptions A1 and
A2 and, thus, can be used in the solution framework
presented in Section 3. Perfectly inelastic demand func-
tions satisfy neither A1 nor A2. A perfectly inelastic
demand is either used in a cost-minimizing setting or
when applying value-of-lost-load pricing (Stoft 2002).
The case of perfectly elastic demand functions assumes
a special role in our framework. Though assumption
A1 is not satisfied, the corresponding integral function
is a linear function. Therefore, perfectly elastic demand
functions can be handled by our framework as well.
In summary, we use the linear and partial-log demand
function to model electricity demand as inelastic.

Next, we describe a mathematical programming for-
mulation that determines the welfare for a given hour
and given power system when the investment deci-
sions have been made. Consider the following nonlin-
ear programming (NLP) problem:

W∗NLP :�
{
max

∫ Q

0
P(x)dx −

∑
i∈	

ci qi

}
(21)

s.t. Q �
∑
i∈	

qi , (22)

0 ≤ qi ≤ CiKi ∀ i ∈ 	. (23)

Problem (21)–(23) is a box-constrained nonlinear
maximization problem (after substituting the rela-
tion (22) for Q into the objective function (21)) with
a concave objective function. It belongs to the class of
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polynomially solvable problems, though it is an open
problem as to whether there exists a strongly poly-
nomial solution algorithm for general convex NLPs
(Vavasis 1991). Problem (21)–(23) (for each hour h and
year t) is the core component of (PGEP).
We utilize an hourly resolution for the market clear-

ing condition for the following reasons:
• (Day-ahead) electricity markets typically have an

hourly time resolution and, thus, hourly electricity
prices (Maurer and Barroso 2011).

• An hourly time resolution allows a detailed rep-
resentation of demand and supply patterns that occur
during a day. In particular, wind and solar power sup-
ply may significantly change throughout the course of
a day. It is important to represent the correlation of
supply of these generation technologies and demand.

• An hourly time resolution implicitly incorporates
multiple supply and demand scenarios, e.g., wind
scenarios, compared to models with a load block
representation.

• Ultimately, we are interested in capturing the
volatility of renewable generators in combination
with base load plants such as coal plants. Thus, we
require a high time resolution. The start-up restrictions
described in Section 2.4 are meaningless in the context
of lower time resolutions.
We therefore refrain from only modeling a small

number of representative hours but model the day-
ahead market in its full resolution. Examples for well-
known expansion models that feature a number of
representative hours are the U.S. Energy Information
Administration’s NEMS, the National Renewable
Energy Laboratory’s Regional Energy Deployment
System (ReEDS) (Martinez et al. 2013), the Electric
Power Research Institute’s U.S. Regional Economy,
Greenhouse Gas, and Energy (US-REGEN) model
(Blanford et al. 2014), and Resources For the Future’s
Haiku (Paul et al. 2009). We decided against using a
higher time resolution (e.g., 15-minute time intervals)
because of the additional complexity it would add, for
instance, in the presence of ramping constraints (see
Section 2.4). Also, since we assume that we have per-
fect foresight and do not consider stochastic demand
or stochastic outages in our model, we can also assume
that we are able to perfectly schedule all generators in
an hourly day-ahead market.

2.4. Start-up Restrictions
The operation of a generator is restricted by its opera-
tion in previous hours, and we are therefore interested
in representing this dependency in (PGEP). We briefly
review ramp constraints as they appear in the literature
and motivate our choice for (PGEP).

There are three processes to consider:
(i) starting an offline generator until it has reached

its minimum generation level,
(ii) load cycling an online generator between itsmin-

imum and maximum generation level, and
(iii) shutting down an online generator after genera-

tion has been reduced to its minimum generation level.
Mixed-integer linear programming (MILP) tech-

niques allow us to model all three processes above and
are widely used. Unit commitment models (Guan et al.
1992, Tseng et al. 2000, Hobbs et al. 2001) belong to
this category, and great detail in modeling start-up (i)
and shut-down (iii) power trajectories can be achieved
(Arroyo and Conejo 2004). However, load cycling an
online generator, as described in (ii), is typically not
seen as critical with an hourly time resolution (Gollmer
et al. 2000, Lindsay and Dragoon 2010). Currently, coal
plants are used in a more flexible operation and can
load cycle from their minimum to their maximum gen-
eration level within the course of an hour, although
their flexibility strongly depends on the plant type, e.g.,
subcritical versus supercritical. Processes (i) and (ii) are
of importance because different start-up costs have to
be applied (Lindsay and Dragoon 2010), dependent on
the duration for which a generator has been offline.
Describing the physical behavior of the generators in
even greater detail leads to mixed-integer nonlinear
programming (MINLP) or NLP models with variable
ramping costs that reflect the physical changes of the
generators (Wang and Shahidehpour 1995) and model
valve-point effects of generators (Han et al. 2001, Xia
and Elaiw 2010).

However, all of these modeling approaches have in
common that they affect the structure of the problem
by either introducing binary variables or nonlineari-
ties. Although (PGEP) is an MINLP, we have shown in
Section 2.3 that the nonlinear term in (1) is concave.
Binary variables γN

it and γ
D
it can be handled by a decom-

position approach that we present in Section 3. We
thereby avoid the introduction of additional nonlinear
and integral terms into (PGEP) that would destroy its
structure.

Linearized ramp constraints describe an alternative
to these binary and nonlinear constructs (DeJonghe
et al. 2011a, Warland et al. 2008). In particular, Warland
et al. (2008) discuss start-up costs for a system with
thermal generators and hydropower plants and show
that linear constraints are a good proxy. Hydrothermal
scheduling models are typically solved with Benders
decomposition-type algorithms, which require LP sub-
problems (Pereira and Pinto 1991). For our long-term
generation expansion problem, linearized start-up con-
straints (4)–(8) are a good trade-off between modeling
detail and complexity. In this regard, our model rep-
resents a compromise between an MILP unit commit-
ment model and a load block representation without
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any form of the start-up restrictions applied by most
expansion models.
Constraints (4) divide the load of the generators

qiht into load below the assumed minimum gener-
ation, qL

iht, and between minimum and maximum
generation, qU

iht. For instance, assuming a minimum
generation of 40% for a given generator i, one would
assign Pmin

i � 0.4CihKi and Pmax
i � CihKi . Then, if qiht �

CihKi , it follows that qL
iht � qU

iht � 1. Constraints (5)
enforce the load below minimum generation to always
exceed the load above minimum generation. Con-
straints (6) define the variables δiht as start-up of a
generator and are penalized in the objective func-
tion. Note that generators can run at a level below
their respective minimum generation using these con-
straints. Thus, they only describe an approximation of
the real world. In particular, constraints (4)–(6) approx-
imate process (i). The start-up costs are proportional to
the respective generator’s capacity, and the respective
generator’s capacity is used in constraint (4).

2.5. Transmission Constraints
Model (PGEP) assumes that the electricity wholesale
market is divided into multiple zones (or nodes),
each with different demand functions, loads, and,
ultimately, electricity prices. Each zone has a cer-
tain demand and associated generators to supply this
demand. Transmission between zones is possible and
is governed by transmission lines. High demand in
a zone with low supply can lead to congestion in
transmission lines between zones. This results in zonal
prices of electricity instead of a single price for the
entire power system. In past years, efforts (Gomez-
Exposito et al. 2008, Kazerooni and Mutale 2010) have
been made to increase the modeling detail with the
aim of better accounting for demand and supply imbal-
ances and the resulting congestion in transmission
lines, leading to nodal models. As an example, the
ERCOT region was divided into four load zones until
2010, but the independent system operator’s current
nodal model divides the market into 4,000 price nodes
to better capture and price the congestion.
In this work, we restrict ourselves to a zonal repre-

sentation of the power market in which power flow
does not adhere to the laws of physics but is rep-
resented in the form of a simple network model.
Constraints (9) and (10) model the flow and its
capacity restrictions and describe what we refer to
as a “pipeline representation,” although oil flowing
through a pipeline is governed by laws of physics as
well (De Wolf and Smeers 1996). Thus, our representa-
tion stands in contrast to a direct current (DC) or alter-
nating current (AC)model (Frank et al. 2012). However,
(PGEP) can be adopted for a nodal market by replacing
constraints (9) and (10) with the linear representation
of DC power flow (Castillo et al. 2002). Since our model
is only comprised of fourmajor load zones, a DCmodel

introduces unnecessary detail and complexity. In fact,
constraints (9) and (10) are common practice in this set-
ting to guarantee computational tractability and can be
found inmost expansion planningmodels (U.S. Energy
Information Administration 2015, EPIS 2015, Nolden
et al. 2013).

However, the algorithm presented in Section 3.1 is
able to handle aDC representation since the constraints
remain linear. Parts of the algorithm in Section 3.2.5
rely on the representation through constraints (9) and
(10) and would have to be adapted to work with DC
flows. An AC representation of power flow introduces
nonlinearities into the constraint set that cannot be han-
dled by either algorithm.

2.6. Investment and Decommissioning Decisions
(PGEP) features multiperiod investment and annual
decommission decisions of power plants. In both cases,
we either let the model make the optimal decision
or implement official announcements of new projects
or closing plants. Both investment and decommission-
ing are effective immediately; i.e., new generators and
transmission lines can be used in the same year and
existing generators are turned off completely.

We represent investment decisions using binary vari-
ables in (PGEP), and constraints (13) ensure that a gen-
erator is built at most once. All algorithms presented
in Section 3 are able to handle continuous invest-
ment decisions as well. In fact, continuous investments
would drastically reduce the number of variables in
(PGEP), because generators of the same technology
could be aggregated into one variable. This represents
a viable simplification for technologies such as solar
and wind generators, because of their small capaci-
ties. Furthermore, a portfolio of discrete investment
projects may be associated with certain strategic deci-
sions, and one may argue that, by adding investment
options, these strategic decisions change. Such a project
portfolio might be fitting from an individual investor’s
perspective but could be problematic from a policy
analysis standpoint.

Either modeling assumption for the type of invest-
ment variable works with start-up restrictions (4)–(8).
Although the capacity of new generators depends on
the investment decisions γN

it , the correct start-up cost is
incurred in the case of γN

it being continuous. Consider
the following example: assume that there is only one
investment period, i.e., |�I |� 1, and further assume that
new generator i with γN

i < 1 is offline in hour h − 1 and
is ramped up to full capacity, i.e., CihKiγ

N
i , in hour h.

It follows that qL
ih � γ

N
i � δih . Thus, the ramping cost is

ĉitγ
N
i Ki , which is correct.

We set an artificial investment limit for new trans-
mission lines to allow the use of continuous decision
variables. Constraints (14) ensure that the limit across
all investment periods is not exceeded. In case this
limit is binding, we increase it and resolve the model.
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Existing plants can be decommissioned to avoid their
annual operation and maintenance costs. We might
be interested in knowing which plants or technolo-
gies become obsolete under certain policies and sce-
narios or implement announcements of closing plants.
Constraints (12) enforce that retired plants stay offline.
Decommission decisions were chosen to be binary to
avoid partial retirement decisions.

2.7. Model Extensions
We briefly address possible model extensions and state
the reasons why we chose not to incorporate them into
our model.
Uncertainty in fuel prices and capacity factors allows

us to hedge our investment decisions against shifts
in market prices and wind volatility. For instance, Jin
et al. (2011) consider a two-stage model with uncer-
tain demand and fuel prices. We already addressed
wind volatility in Section 2.3, so let us consider the
fuel prices. Given the size of model (1)–(17), model-
ing uncertainty is a difficult task and might lead to an
intractable model, even for small scenario trees using
decompositionmethods. It is certainly possible to intro-
duce uncertainty for special cases of the model such
as the core model discussed in Sections 3.2.1 and 3.2.4.
However, from a case study standpoint, we are much
more interested in running specific fuel price scenarios
than hedging against multiple ones at the same time.

Imperfect competition in the market is an assump-
tion that is not possible in our welfare maximization
framework. We assume that all market participants are
price takers in a competitive market. With decreasing
natural gas prices in the past years and a resulting
flat supply curve, exercising market power through
decreasing supply bids of base load plants such as coal
is very limited. In back-testing, (PGEP) yields electric-
ity prices that are close to the observed prices.

Risk aversion with respect to the investment and
decommissioning decisions is not represented, but it
is possible to incorporate. In our model, an investment
decision is favorable as soon as its discounted returns
over the planning horizon exceed its initial cost. Risk
aversion is typically represented by a concave utility
function and, dependent on its shape, keeps us from
making marginally profitable investments or retiring
marginallyunprofitable generators. Theutility function
would enter the objective function and, thus, preserve
its concavity. However, we decide against modeling
risk aversion since we do not explicitly incorporate
uncertainty.

3. Solution Algorithms
Model (PGEP) is a very large-scale MINLP because
of the hourly resolution in combination with a plan-
ning horizon of more than two decades. Consequently,
(PGEP) cannot be solved efficiently as a monolith; see

Section 4. Thus, wemust exploit the problem structure:
for given investment decisions γN

it and γ
T
uvt, and decom-

missioning decisions γD
it , the model decomposes into

|�| · |�| zonalmarket clearing problems coupled by con-
straints (6). This naturally suggests a type of Benders
decomposition approach (Benders 1962).

More specifically, because the subproblem is a con-
vex NLP, a GBD approach must be applied (Geoffrion
1972). GBD is an extension of classical Benders decom-
position (Benders 1962, 2005) in that it can handle
NLPs. For computational speed and robustness, we
propose a novel Benders decomposition-type approach
in which we linearly and dynamically overestimate the
concave objective function of the subproblems, trans-
forming the NLPs into LPs. Although we solve LPs,
our approach yields the optimal solution for all special
cases of (PGEP) considered as shown later in this sec-
tion. We show computational results of solving NLPs
versus LPs as subproblems in Section 4.

For an LP with two types of variables, the basic idea
of Benders decomposition is to treat the so-called com-
plicating variables—these are the variables that con-
nect the problem—in a master problem and the other
type of variables in the subproblem. The information of
the subproblem is passed to the master problem via an
outer linearization with two types of hyperplanes: the
Benders feasibility and optimality cuts. The key con-
cept is that the feasible region of the dual problems of
the subproblems is independent of any selection of the
γN

it , γ
T
uvt, and γD

it variables. This allows for an exact rep-
resentation of the subproblem with a finite number of
hyperplanes. The same method can be applied toward
anMILP if all integer variables are moved to themaster
problem while the subproblem remains an LP.

3.1. Generalized Benders Decomposition
Using Dynamic Overestimation

We follow the idea of (generalized) Benders decom-
position, in that we decompose (PGEP) into two
problems: a relaxed master problem (Master) and a
subproblem (Sub). Problem (Master) reads

w∗ : �
{
max−

∑
t∈�I

β(t−1)
[∑

i∈	N
γN

it FI
it Ki +

∑
uv∈Ω

γT
uvtF

T
uvtK

T
uv

]
−

∑
t∈�
(β)t

[∑
i∈	N

∑
t′∈�I
t′≤t

γN
it′F

OM
i Ki +

∑
i∈	EX

γD
it FOM

i Ki

]
+ η

}
s.t. η≤

∑
t∈�

∑
i∈	EX

ωD
i jtγ

D
it

+
∑
t∈�I

(∑
i∈	N

ωN
i jtγ

N
it +

∑
uv∈Ω

ωT
uvtγ

T
uvt

)
+ωc

j ∀ j ∈
, (12)–(17). (24)

Unrestricted variable η is commonly referred to as
“future benefit function,” although “future welfare
function” is a more appropriate term in our setting.
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The GBD subproblem (Sub), for trial values γ̄ :�
(γ̄D , γ̄N , γ̄T), reads

W ∗(γ̄) :� max
∑
t∈�

∑
h∈�
(β)t

(∑
u∈�

∫ Quht

0
Puht(x)dx

−
∑
i∈	

cit qiht−
∑
i∈	R

ĉit Kiδiht

)
(25)

s.t. 0≤ qiht ≤ γ̄D
it CihKi

∀ i ∈ 	EX , h ∈�, t ∈�, (λ∗), (26)
0≤ qiht ≤

∑
t′∈�I
t′≤t

γ̄N
it′CihKi

∀ i ∈ 	N , h ∈�, t ∈�, (λ∗), (27)
0≤ xuvht ≤ Fmax

uv +
∑
t′∈�I
t′≤t

γ̄T
uvt′K

T
uv

∀ uv ∈Ω, h ∈�, t ∈�, (π∗), (28)
(4)–(9), (11), (29)

with some optimal dual solution vectors λ∗ and π∗.
Note that (Sub) is a convex NLP and, thus, possesses a
zero duality gap. With that, its dual solutions are well
defined, though multiple dual optimal solutions might
exist.
Cut coefficients ωD

i jt , ω
N
i jt , and ω

T
juvt, as well as right-

hand side constant ωc
j for the Benders optimality

cuts (24) are obtained as follows, for some cut index
j ∈ 
, and all t ∈ �:

ωD
i jt �

∑
h∈�

λc
ihtCihKi ∀ i ∈ 	EX , (30)

ωN
i jt �

∑
h∈�

∑
t′∈�
t′≥t

λc
iht′CihKi ∀ i ∈ 	N , (31)

ωT
juvt �

∑
h∈�

∑
t′∈�I
t′≥t

πc
uvhtK

T
uv ∀ uv ∈Ω, (32)

ωc
jt � W ∗(γ̄) −

∑
t∈�

∑
i∈	EX

ωD
i jt γ̄

D
it

−
∑
t∈�I

(∑
i∈	N

ωN
i jt γ̄

N
it +

∑
uv∈Ω

ωT
juvtγ̄

T
uvt

)
. (33)

We omit feasibility cuts for (Master) because (Sub)
is feasible for any choice γ̄ satisfying (12)–(17). That
means it is feasible to have no generation capacity,
i.e., no (or low) investments and complete decom-
missioning of the existing fleet. However, the result-
ing electricity price would be extremely high (in the
case of a linear demand function; see Table 1) or infi-
nite (in the case of a partial-log demand function; see
Table 1), which is not desirable and affects algorithm
performance. In Section 2.3, we stated that we intro-
duce an artificial generator with a sufficiently high
marginal cost. This artificial generator is not allowed
to be decommissioned, which (1) avoids dealing with
infinite electricity prices and (2) leads to numerically
superior dual variables.

For (Sub), we propose to linearly overestimate the
concave functions

ζuht(Quht) :�
∫ Quht

0
Puht(x)dx

in variables Quht present in the objective function (25)
(the overestimation is crucial for the correctness of the
obtained upper bounds; see below) at a finite number
of break points. This yields the following linearized
and overestimated subproblem (Sub:O) for trial γ̄:

W̄(γ̄) :� max
∑
t∈�

∑
h∈�
(β)t

(∑
u∈�

φuht −
∑
i∈	

cit qiht

−
∑
i∈	R

ĉit Kiδiht

)
s.t. φuht ≤ $s

κuhtQuht +$
c
κuht

∀κ ∈�uht , u ∈ �, h ∈�, t ∈ �,
(26)–(29),

(34)

where $s
κuht and $c

κuht are slope and constant of the
affine function overestimating ζuht( · ), for cut index
κ ∈�uht. To distinguish the cuts for ζuht( · ) from the
Benders optimality cuts, we call κ ∈ �uht the “break
point set” and κ the “break point index” for the
remainder of this paper.

At break point y, the slope of the linear overestima-
tor for break point index κ is given by

$s
κuht(y) :�

d
dy
ζuht(y)� Puht(y) ∀ u ∈ �, h ∈�, t ∈ �,

and its constant is calculated via

$c
κuht(y) :� ζuht(y) −$s

κuht(y)y ∀ u ∈ �, h ∈�, t ∈ �.

We propose to start with a coarse grid of break
points, to initialize the break point set�uht for all u ∈ �,
h ∈ �, t ∈ � in the preprocessing step of the algo-
rithm. This is a static discretization. Throughout the
Benders iterations, we add break points dynamically
at computed quantities Quht if the objective function
value of the overestimated problem is too far away
from the exact objective function value evaluated for
that Quht. A detailed description of the generalized
Benders decomposition algorithm using dynamic lin-
ear overestimators (BD-DO) is given below (for some
user-defined tolerance ε > 0).
Benders Decomposition Using Dynamic Overestimator
(BD-DO) to Solve (PGEP)

1. Initialize. Empty Benders cut set 
 � �, initialize
lower bound LB � −∞, initialize set of overestimator
cuts �uht, and define some trial γ̄ satisfying (12)–(17).

2. Solve (Sub:O). For trial γ̄, solve (Sub:O) to obtain
dual solutions λ∗ and π∗ as well as equilibrium quanti-
ties Q∗uht and overestimator value φ∗uht.
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3. Update overestimator. If∑
t∈�

∑
h∈�

∑
u∈�
(β)t

(
φ∗uht − ζuht(Q∗uht)

)
>
ε
2 ,

construct overestimating cut (34) at y � Q∗uht and add
additional break point index to�uht for all zones u ∈�,
all hours h ∈�, and all years t ∈ �.
4. Update LB. Calculate

w � W̄ ∗(γ̄)+
∑
t∈�

∑
h∈�

∑
u∈�
(β)t(ζuht(Q∗uht) −φ∗uht)

−
∑
t∈�I

β(t−1)
[∑

i∈	N
γ̄N

it FI
it Ki +

∑
uv∈Ω

γ̄T
uvtF

T
uvtK

T
uv

]
−

∑
t∈�
(β)t

[∑
i∈	N

∑
t′∈�I
t′≤t

γ̄N
it′F

OM
i Ki +

∑
i∈	EX

γ̄D
it FOM

i Ki

]
,

and update lower bound LB � max{LB,w}.
5. Construct cut. Construct the Benders optimality

cut for (Master) via (30)–(32) and

ωc
ιt � W̄ ∗(γ̄) −

∑
t∈�

∑
i∈	EX

ωD
iιt γ̄

D
it

−
∑
t∈�I

(∑
i∈	N

ωN
iιt γ̄

N
it +

∑
uv∈Ω

ωT
ιuvt γ̄

T
uvt

)
;

add additional cut index ι to 
.
6. Solve (Master). Solve (Master) to obtain new trial

γ̄ � (γD, ∗ , γN, ∗ , γT,∗) and to update upper bound
UB � w∗.
7. Check convergence. If UB − LB ≤ ε, STOP (optimal

solution found); otherwise, go to step 2.

Proposition 2. The Benders decomposition-type algorithm
BD-DO is correct and converges after finitely many itera-
tions to an ε optimal solution for (PGEP) for any ε > 0, i.e.,
a feasible solution to (PGEP) with objective function value
≥W ∗

NLP − ε.
Proof. We need to show two things: (1) the Benders
optimality cuts derived from solving (Sub:O) are valid
(step 5 in BD-DO), and (2) finitelymany optimality cuts
suffice to reach convergence.
1. Subproblem (Sub:O) overestimates the true opti-

mal objective function value; i.e., we have W̄ ∗(γ̄) ≥
W ∗(γ̄) for any choice of γ̄ � (γ̄D , γ̄N , γ̄T) satisfy-
ing (12)–(17). Because the Benders optimality cuts de-
rived from (Sub:O) overestimate the (piecewise linear,
concave) function W̄( · ), the cut is also valid for (Sub).
2. We can reach an ε optimality tolerance in finitely

many iterations as follows. We observe that objective
function (25) can be approximated using cuts (34) such
that |W ∗( · ) − W̄( · )| ≤ ε/2. Because function (25) is con-
tinuous, finitelymany cuts suffice. Because the Benders
decomposition method for LPs converges to a toler-
ance of ε/2 in finitely many steps, finite convergence is
guaranteed. �

Remark 1. Note that the optimality cuts derived from
(Sub:O)might not be tight in some iterations, especially
in the early ones.
Remark 2. Instead of using an absolute tolerance cri-
terium, ε, one might use a relative one. For ε̄ > 0, we
then ask UB − LB ≤ ε̄ · LB in step 7 of BD-DO. Step 3
can be changed as follows.

3. Update overestimator. For all zones u ∈ �, all hours
h ∈�, and all years t ∈ �, if

φ∗uht−ζuht(Q∗uht)>
ε̄
2

(
ζuht(Q∗uht)−

∑
i∈	

cit q
∗
iht−

∑
i∈	R

ĉit Kiδ
∗
iht

)
,

then construct overestimating cut (34) at y � Q∗uht; add
additional break point index to �uht.
This avoids adding overestimator cuts to hours that are
already sufficiently approximated.

3.2. Special Cases of the Subproblem
Although the above decomposition BD-DO allows
us to solve large problem instances of (PGEP), this
approach is limited by the computational tractability of
(Sub:O). In other words, solving (Sub:O) as a monolith
becomes very time and memory intensive. In our case,
(Sub:O) quickly exceeds the memory of off-the-shelf
personal computers for instances that span several
years (see Section 4). We therefore consider three spe-
cial cases of model (PGEP) in order to further exploit
(Sub:O)’s structure. We begin by describing three “tra-
ditional” mathematical programming approaches in
which primal and dual solution values of the (Sub:O)
are obtained by solving corresponding mathemati-
cal programming problems via a standard LP solver
(Sections 3.2.1–3.2.3). Then, we demonstrate that nec-
essary primal and dual solution values for the Ben-
ders subproblem can be explicitly calculated in some
cases (Sections 3.2.4–3.2.6). This leads to highly efficient
algorithms that significantly outperform their “tradi-
tional” counterparts. Thus, the analysis of these spe-
cial cases in this section serves two purposes: (1) we
demonstrate how to make the large (Sub:O) tractable,
and (2) we are able to identify structures that can be
exploited in cut calculation approaches. The three spe-
cial cases are as follows.

(Core). We define the core model as the combina-
tion of the hourly market clearing component (see Sec-
tion 2.3) for one load zone and annual investment
and decommissioning decisions (and Section 2.6). This
means that neither start-up restrictions (4)–(8) nor
transmission constraints (9) and (10) are part of this
model. In Sections 3.2.1 and 3.2.4, two efficient algo-
rithms are presented to solve (Core).

(Core:T). We extend the core model by modeling
multiple load zones using transmission constraints (9)
and (10) and annual transmission capacity expansions.
We present the modified algorithms in Sections 3.2.2
and 3.2.5.
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(Core:R). We extend the core model using start-up
restrictions (4)–(8), which introduces a coupling of
hours. We present the modified algorithms in Sec-
tions 3.2.3 and 3.2.6.
3.2.1. GBD with Dynamic Linear Overestimation for
(Core). Model (Core) simplifies both the relaxed Mas-
ter problems (Master) as well as the linearized sub-
problem (Sub:O). We call the resulting subproblem
(Sub:Core) and (Sub:Core:O). Most notably, the sub-
problem (Sub:Core:O) decomposes into |�| · |�| inde-
pendent linear programming problems. Consequently,
if (Core) is a reasonable simplification of (PGEP),
memory restrictions are no longer an issue, because
(Sub:O) can be further decomposed into problems as
small as one hour. Furthermore, the solution time
drastically decreases, because parallel programming
schemes become applicable.
3.2.2. GBD with Dynamic Linear Overestimation for
(Core:T). Similar to (Core), in model (Core:T), the sub-
problem (Sub:O) decomposes into |�| · |�| independent
LPs denoted by (Sub:T:O)ht for h ∈ � and t ∈ �. Each
such LP is then an hourly market-clearing problem
considering multiple load zones. We denote the sub-
problem (Sub:O) for model (Core:T) by (Sub:T:O). The
benefits of simplifying (PGEP) into (Core:T) are the
same as described in Section 3.2.1.
3.2.3. GBD with Dynamic Linear Overestimation for
(Core:R). In contrast to (Core) and (Core:T), the pres-
ence of linear start-up restrictions (4)–(8) in (Core:R)
introduces a coupling of consecutive hours (Sub:R:O),
which denotes the resulting overestimated subprob-
lem (Sub:O) for (Core:R). The Benders subprob-
lem (Sub:R:O) no longer decomposes with h and t.
This coupling makes it significantly harder to solve
subproblem (Sub:R:O), compared to the (Core) and
(Core:T) models. Although (Core:R) is a special case
of (PGEP), the following description directly leads to a
solution method for (Sub:O) and, therefore, (PGEP).
To solve LP (Sub:R:O), we suggest an NBD algorithm

(Ho and Manne 1974, Birge and Louveaux 2011). This
algorithm allows the decomposition into |�| · |�| one-
hour problems (having one zone each), coupled from
one hour to the next via state variables q̄L

ih′t′ . In the
following discussion, we omit the zonal index u, where
applicable. For some trial γ̄� (γ̄N , γ̄D) and all h ∈� and
t ∈�, these one-hour problems are given by (Sub:R:O)ht

W̃ ∗
ht(γ̄, q̄L

ih′t′)

:� max
{
(β)t

(
φht −

∑
i∈	

cit qiht −
∑
i∈	R

ĉit Kiδiht

)
+ η̃ht

}
s.t. φht ≤ $s

κhtQht +$
c
κht ∀κ ∈�ht ,

0 ≤ qiht ≤ γ̄D
it CihKi ∀ i ∈ 	EX , (35)

0 ≤ qiht ≤
∑
t′∈�I
t′≤t

γ̄N
it′CihKi ∀ i ∈ 	N , (36)

Pmin
i qL

iht + (Pmax
i −Pmin

i )qU
iht � qiht ∀ i ∈ 	R ,

qL
iht − qU

iht ≥ 0 ∀ i ∈ 	R ,
qL
iht ≤ δiht + q̄L

ih′t′

∀ i ∈ 	R , (h′, t′) ∈Aht , (λ̃
∗), (37)

η̃ht ≤
∑
i∈	R

ω̃s
ĳhtq

L
iht + ω̃

c
jht ∀ j ∈ 
̃ht , (38)

0 ≤ qL
iht , qU

iht ≤ 1 ∀ i ∈ 	R .

LP (Sub:R:O)ht also contains Benders optimality cuts
(38) to “price” the future benefit associated with qL

iht.
For h ∈� and t ∈ �, these cuts are calculated through

ω̃s
i jh′t′ � λ̃

c
iht ∀ i ∈ 	R , (39)

ω̃c
jh′t′ � W̃ ∗

ht(γ̄, q̄L
ih′t′) −

∑
i∈	R

ω̃s
i jh′t′ q̄

L
ih′t′ , (40)

for some index j ∈ 
̃ht and (h′, t′) ∈ Aht . Vector λ̃
c is an

optimal dual solution associated with constraint (37),
and 
̃ht is the cut set for hour h ∈ � in year t ∈ �.
Again, we can omit feasibility cuts because problem
(Sub:R:O) is feasible for any choice and combination of
γ̄ and q̄L

ih′t′ .
Note that (Sub:R:O)ht does not necessarily have to

be a one-hour problem but can be a block of multiple
consecutive hours. In that case, state variables enter the
problem in the first hour of the block, and the opti-
mality cuts are associated with the last hour of the
block. This results in the following trade-off: the more
hours each problem contains, the fewer Benders itera-
tions for convergence are expected; however, the effort
to solve each such problem increases. During our com-
putations, we observed that a grouping of 100 hours
yields a good algorithmic performance.

The BD-DO algorithm can now be used in con-
junction with an NBD approach to solve (Sub:R:O).
This NBD iteratively solves the (Sub:R:O)ht problems.
However, to obtain stronger Benders optimality cuts
in step 5 of BD-DO, it is advantageous to dynamically
update the linear overestimators for ζht( · ) ≡ ζuht( · )
while iterating in the NBD algorithm, instead of once
in each iteration of BD-DO. This way, the resulting
algorithm solves the subproblem (Sub:R:O) up to some
user-defined tolerance. We merge steps 2 and 3 in BD-
DO and solve the following, what we call “Inner NBD”
(for some trial γ̄ and initial state variable level q̄L

i00 and
tolerance TOL).
Inner NBD to Solve (Sub:R:O)

1. Initialize. Empty cut sets 
̃ht �� ∀ h ∈�, t ∈ �, ini-
tialize lower bound L̃B � −∞, and initialize trial state
variable levels q̄L

iht.
2. Backward step. For years t̃ � |�|, . . . , 1 and hours h̃ �

|�|, . . . , 1,
2.1 Solve (Sub:R:O)h̃ t̃ . Solve (Sub:R:O)h̃ t̃ to obtain

dual solutions λ̃∗ and optimal objective function value
W̃ ∗

h̃ t̃
(γ̄, q̄L

ih′t′).
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2.2 Cut. Construct optimality cut (38) using λ̃∗ and
W̃ ∗

h̃ t̃
(γ̄, q̄L

ih′t′); add cut to cut set 
̃h′t′ for (h′, t′) ∈Ah̃ t̃ .
3. Update upper bound. ŨB� W̃ ∗

11(γ̄, q̄L
i00).

4. Forward step. For years t̃ � 1, . . . , |�| and hours h̃ �

1, . . . , |�|,
4.1 Solve (Sub:R:O)h̃ t̃ . Solve (Sub:R:O)h̃ t̃ to obtain

overestimator value φ∗ht , quantity q∗iht, and start-up vari-
able δ∗iht.

4.2 Update duals and equilibrium quantity. Update
dual solutions λ∗ associated with constraints (35) and
(36) and equilibrium quantity Q∗ht (returned if termi-
nated in step 6).

4.3 Update trial state variables. Update trial state
variable values q̄L

i h̃ t̃
� qL, ∗

i h̃ t̃
.

5. Update overestimator. If∑
t∈�

∑
h∈�
(β)t

(
φ∗ht − ζht(Q∗ht)

)
>
ε
2 ,

construct overestimating cut (34) at y � Q∗ht and add
additional break point index to �ht for all hours h ∈ �
and all years t ∈ �.

6. Update lower bound. Calculate

w̃ �
∑
t∈�

∑
h∈�
(β)t

(
φ∗ht −

∑
i∈	

cit q
∗
iht −

∑
i∈	R

ĉit Kiδ
∗
iht

)
,

and update lower bound L̃B � max{L̃B,w̃}.
7. Check convergence. If ŨB − L̃B ≤ TOL, STOP

(return λ∗, Q∗ht , and L̃B); otherwise, go to step 2.
Proposition 3. The BD-DO in conjunction with the
“Inner Nested Benders” above is correct and converges
after finitely many iterations with an ε optimal solution to
(Core:R).
Proof. We need to show that for the Inner NBD algo-
rithm, the optimality cuts (38) derived from solving
(Sub:R:O)h′t′ for (h′, t′) ∈ Ah̃ t̃ are valid and that finitely
many such optimality cuts suffice to reach convergence.
Both the correctness and the finiteness follow from
Theorem 2 and NBD algorithm theory.
For the BD-DO algorithm, we need to argue that

the optimality cuts (24) are valid and that finitely
many optimality cuts suffice to reach convergence. Cor-
rectness and finiteness follow both from linear pro-
gramming theory, by recognizing that the solution of
the Inner NBD algorithm yields an optimal basis for
(Sub:R:O). �
Remark 3. Note that the cuts in the Inner NBD
algorithm derived from the linearized subproblems
(Sub:R:O)ht might not be tight in the earlier iterations.
More importantly, the Inner Nested Benders algo-
rithm must converge to guarantee the construction of
a valid cut (24) with respect to the overall convergence
tolerance ε.
3.2.4. Efficient Cut Calculation for (Core). Since (Core)
is a special case of (Core:T) with |�| � 1, we defer

from describing the detailed algorithm for (Core) in
this section. Instead, we introduce the general idea of
cut calculation and make a remark in Section 3.2.5 how
to extract the algorithm for (Core). As shown in Sec-
tion 3.2.1, (Sub) decomposes into one-hour subprob-
lems for (Core). Each of these independent problems
represents the market clearing condition described in
Section 2.3 and visualized in Figures 1–3. Through sort-
ing all generators by their marginal costs cit in ascend-
ing order, the optimal primal solution values in a given
hour can be obtained by calculating the intersection of
the supply curve, i.e., the generators with their effec-
tive capacities and variable generator costs, and the
demand curve. Additionally, once the optimal primal
solution values are obtained, we can use Equation (19)
to calculate the associated market clearing price and
make the following observation. The dual solutions on
each generator’s capacity (i.e., constraints (2) and (3))
can be expressed by using the market clearing price:

λiht �

{
(β)t(P∗ht − cit) cit <P∗ht ,

0 otherwise,
∀ i ∈ 	, h ∈�, t ∈�. (41)

Figure 1 visualizes the concept. All generators with
a variable cost cit greater than or equal to the mar-
ket price have a shadow price of zero in that hour.
Generators with a marginal cost lower than the mar-
ket price have a positive dual variable, because they
would increase thewelfare. The dual variable is the dis-
counted difference of market price and marginal cost.
Thus, we can calculate all necessary solution values
without solving a single LP for the subproblem. All
algorithms presented in Sections 3.2.4–3.2.6 build on
this very idea, and, for notational convenience, we do
not distinguish between existing and new generators in
the following sections. We substitute Ki :� γ̄N

i Ki ∀ i ∈ 	N
and Ki :� γ̄D

i Ki ∀ i ∈ 	EX.
3.2.5. Hybrid Cut Calculation for the Core Model with
Transmission Constraints. If transmission constraints
(9)–(11) are added to (Sub:Core), the simple demand–
supply intersection calculation of Section 3.2.4 used
to obtain price and system load becomes significantly
more challenging. Zones u are linked and each zone
has its own market price and load. However, one can
prove the following proposition if there are no trans-
mission costs:

Proposition 4. If transmission constraints (10) are non-
binding at optimality, the market prices in all zones are
identical.

If the market prices are not identical across all zones,
it is favorable to transmit electricity from a zone with a
lowermarket price to a zonewith a highermarket price
until they are equal, given that there are no transmis-
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sion costs. If there is sufficient capacity on the trans-
mission lines, Proposition 4 holds true. In Section 4 we
show that for our data set, transmission constraints are
binding in 10% to 15% of the hours in the planning
horizon. In this case, the market price, load, export,
and import in each zone can be calculated as shown in
Algorithm 1. (Generators are ordered by their marginal
cost ci in ascending order.)
Algorithm 1 (Find Equilibria Under Nonbinding Transmis-
sion Constraints)
1: Given are demand functions fu ∀ u ∈ �, the set

of all generators 	, the generator capacities Ki ,
capacity utilization factors Ci , variable generator
cost ci , and generator to zone mapping Iu .

2: K̄u � 0 ∀ u ∈ �
3: for i � 1→ |	| do
4: K̄Iu

� K̄Iu
+CiKi

5: Qu � fu(ci) ∀ u ∈ �
6: ΣQ �

∑
u∈� Qu , ΣK̄ �

∑
u∈� K̄u

7: qi � CiKi
8: if ΣQ < ΣK̄ then
9: if ΣK̄ −CiKi > ΣQ then
10: Solve system (42) to obtain P∗u and

Q∗u ∀ u ∈ �
11: qi � 0
12: else
13: P∗u � ci , Q∗u � Qu , ∀ u ∈ �
14: qi � K̄Iu

−Q∗Iu
15: end if
16: EXP∗u � max(K̄u −Q∗u , 0)
17: IMP∗u � max(Q∗u − K̄u , 0)
18: return load Q∗u , generator levels q∗i , import

IMP∗u , and export EXP∗u for each zone u
19: end if
20: end for
We first assume that the transmission constraints are

nonbinding and check later if this is indeed satisfied.
With this assumption, themarket prices P∗u for all zones
are identical; i.e., P∗u � p∗ ∀ u ∈ �. Therefore, transmis-
sion can be ignored, and we iterate over all generators
in ascending order to find the generator for which the
total supply in the system up to its marginal cost ci
is higher than the total demand at each zone u under
p∗ � ci . Then, there are two cases: (i) either the market
price is identical with ci , or (ii) i is not running and we
have the case shown in Figure 2. If the latter is true,
a system with |�| + 1 unknowns and |�| + 1 equations
can be solved to obtain p∗ and Q∗u :

p∗ � P1(Q∗1),
p∗ � P2(Q∗2),
... (42)

p∗ � P|�|(Q∗|�),
ΣK̄ −Ci∗Ki∗ � Q∗1 +Q∗2 + · · ·+Q∗|�| ,

where i∗ is the cheapest generator not in the dispatch.

Figure 4. Maximum Flow For a System with Five Buses

s t

1
EXP1

IMP1

2EXP2 IMP2

3
EXP3

IMP3
4

EXP4

IMP4

5

EXP5

IMP5

The special case exists that all generators in a given
zone u′ are transmitting their electricity to the other
zones; i.e., Q∗u′ � 0 and P∗u′ � Pu′(Q∗u′). The column and
row associated with u′ are removed from system (42).
We omitted this case in Algorithm 2, shown above for
convenience purposes.

Export and import quantities for each bus can be
obtained by comparing the supply and demand in each
zone at equilibrium. At this point, we can solve a max-
imum flow problem to check if the assumption that
all transmission capacities are nonbinding is indeed
satisfied. Figure 4 displays the corresponding directed
maximum flow problem for a system with five zones.
Source node s and target node t are artificial nodes
and connected to all zones in the system via artifi-
cial arcs. The capacities on these arcs correspond to
the import and export values obtained for each zone
using Algorithm 2. The bold bidirectional arcs repre-
sent the original system’s transmission lines between
zones.

Remark 4. Note that Algorithm 1 directly reduces to
an algorithm for (Core) if |�| � 1. Instead of solving
system (42) on line 10, one can directly assign Q∗ �
ΣK̄ −CiKi and calculate P∗ through (19).

The maximum flow algorithm selected depends on
the type of transmission constraints. In the case of con-
straints (9) and (10), the Edmonds–Karp algorithm can
be used. If the resulting maximum flow is equal to
the sum of exports across all zones, all transmission
constraints are nonbinding and we can use the hourly
market price obtained in Algorithm 1 to calculate the
dual variables as in (41). If this is not the case, the
demand in each node becomes a function of the sup-
ply curves in the other zones and standard network
algorithms cannot be used. Thus, we propose to solve
the corresponding one-hour subproblem to obtain the
dual variables.

In the GB-DO decomposition approach described in
Sections 3.1 and 3.2.2, step 2 is modified as follows.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

2a
00

:1
39

8:
4:

6c
02

:d
cd

6:
f8

84
:3

02
0:

56
e3

] 
on

 0
9 

Se
pt

em
be

r 
20

24
, a

t 0
4:

16
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Lohmann and Rebennack: Benders Decomposition for a Power Expansion Model
Management Science, 2017, vol. 63, no. 6, pp. 2027–2048, ©2016 INFORMS 2041

2.1.Run Algorithm 1. Run Algorithm 1 for γ̄ and ob-
tain equilibriumquantitiesQ∗uht, equilibriumpricesP∗uht,
and import/export quantities IMP∗uht/EXP∗uht.
2.2. Solve maximum flow. Solve the corresponding

maximumflowproblem shown in Figure 4 for all hours
h ∈ � and all years t ∈ �. Denote the maximum flow
values by f flowht .
2.3 Solve subproblem. For all hours h ∈� and all years

t ∈ �,
If f flowht �

∑
u∈� EXPuht, calculate dual variables λ∗iht as

described in Section 3.2.4 and define φ∗uht � ζuht(Q∗uht).
Else solve subproblem (Sub:T:O)ht for trial γ̄ to

obtain dual variables λ∗iht, equilibrium quantities Q∗uht,
and overestimator value φ∗uht.

Step 3 in BD-DO must only be carried out for hours
in which the dual variables cannot be calculated. In
the unlikely case that the transmission constraints are
never binding, overestimating the NLP subproblem
becomes entirely obsolete. In fact, we could calculate
the optimal solution for (Sub:T), and thus the result-
ing Benders optimality cut (24) would be tight. This
is always the case for |�| � 1, i.e., for (Core) in Sec-
tion 3.2.4, and it follows that the lower bound in step 4
can be calculated by using W ∗(γ̄); the same applies to
step 5 when constructing the Benders optimality cut.
The following interpretation is valid: for hours h ∈�

and years t ∈ � when the transmission constraints are
nonbinding, we calculate the dual variables of the lin-
earized NLPs with break points at, and sufficiently
close to, the optimal quantity Q∗uht. (GBD theory also
provides the correctness of this cut calculation algo-
rithm.) For all other hours and years, we solve the cor-
responding linearized subproblem, as in BD-DO. This
guarantees the convergence of the resulting decompo-
sition algorithm.
If we were able to calculate the primal solution in

the case of binding transmission constraints, the dual
variables for constraints (2) and (3) are the discounted
difference of a generator’s marginal cost and the zonal
market price it is located in. The dual variables on con-
straints (10) are the discounted difference in zonal mar-
ket prices.
3.2.6. Hybrid Cut Calculation for the Core Model with
Start-up Restrictions. In the previous two sections,
the dual variables on constraints (2) and (3) could be
obtained by calculating the market price and load in
each hour independently of other hours. If start-up
constraints are present, the one-hour subproblems are
not independent anymore and the equilibrium price
and quantity may depend on previous and future
hours. We use the NBD framework presented in Sec-
tion 3.2.3 to decompose (Sub:R:O) into |�| · |�| problems
of form (Sub:R:O)ht . The link between a given hour
and its previous hour is state variables q̄L, whereas the
link to the next hour is the Benders optimality cuts

(38). This decomposition allows us to treat each hour
individually.

In the following, the core idea of cut calculation with
start-up constraints is drafted. We do not present com-
putational results for this algorithm because of reasons
discussed below and in Section 4. The main challenge
is that dual variables on constraints (37) cannot be cal-
culated for all one-hour subproblems, andwe therefore
obtain a hybrid algorithm in which dual variables are
calculated if possible and the corresponding NLP is
solved if not.

The idea of the dual variable calculation is to
split each generator into multiple generators based
on whether the generator (1) has start-up restriction,
(2) was running in the previous hour, and (3) is affected
by a cut coefficient.

We define splitting a generator as replacing a gener-
ator with two or more new generators. Their capacities
add to the replaced generator’s capacity, but the new
generators may have different marginal costs.

These criteria result in the following five cases for a
given hour h and year t, and previous hour h′t′.
(a) If [i < 	R] or [q̄L

ih′t′ � 1 and ∀ j ∈ 
ht : ω̃s
ĳht � 0], do

not split generator i:

c1
it :� cit , (CihKi)1 :� CihKi .

(b) If [i ∈ 	R] and [q̄L
ih′t′ � 1] and [∃ j ∈ 
ht : ω̃s

ĳht > 0],
split generator i in two generators:

c1
it :� cit −

ω̃s
ĳht

Pmin
i · βt CihKi

, (CihKi)1 :� Pmin
i ·CihKi ;

c2
it :� cit , (CihKi)2 :� (Pmax

i −Pmin
i ) ·CihKi .

(c) If [i ∈ 	R] and [q̄L
ih′t′ < 1] and [∀ j ∈ 
ht : ω̃s

ĳht � 0],
split generator i in two generators:

c1
it :� cit , (CihKi)1 :� q̄L

ih′t′CihKi ;

c2
it :� cit +

ĉit

Cih
, (CihKi)2 :� (1− q̄L

ih′t′)CihKi .

(d) If [i ∈ 	R] and [q̄L
ih′t′ < 1] and [∃ j ∈ 
ht : ω̃s

ĳht � 0]
and [ĉit Ki ≥ ω̃s

ĳht], split generator i in three generators:

c1
it :� cit −

ω̃s
ĳht

Pmin
i · βt CihKi

, (CihKi)1 :�Pmin
i · q̄L

ih′t′CihKi ;

c2
it :�

ĉit

Cih
−

ω̃s
ĳht

βt CihKi
,

(CihKi)2 :� (Pmax
i −Pmin

i ) · q̄L
ih′t′CihKi ;

c3
it :� cit , (CihKi)3 :� (1− q̄L

ih′t′)CihKi .

(e) If [i ∈ 	R] and [qL
ih′t′ < 1] and [∃ j ∈ 
ht : ω̃s

ĳht � 0] and
[ĉit Ki < ω̃

s
ĳht], split generator i in three generators:

c1
it :� cit −

ω̃s
ĳht

Pmin
i · βt CihKi

,

(CihKi)1 :� Pmin
i · q̄L

ih′t′CihKi ;
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Figure 5. Five Cases for Splitting Generators
(a)

ci
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1
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ci
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ci
2
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ci
1

ci
1

ci
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ci
2

ci
3

ci

ci
2

ci
3

ci
1

c2
it :� cit +

ĉit

Pmin
i ·Cih

−
ω̃s

ĳht

Pmin
i · βt CihKi

,

(CihKi)2 :� Pmin
i · (1− q̄L

ih′t′)CihKi ;
c3

it :� cit , (CihKi)3 :� (Pmax
i −Pmin

i ) ·CihKi .

These five cases are visualized in Figure 5. If state
variable q̄L

ih′t′ is equal to one or if the generator has
no start-up restriction, we can use it at full capacity
with its regular costs (case (a)). However, if generator i
is affected by a positive cut coefficient, we receive an
additional benefit. This can be expressed as a decreased
generator cost (case (b)). If state variable q̄L

ih′t′ is less
than one, there are three possible scenarios. If genera-
tor i is not affected by a cut coefficient, it can be used
up to qL

ih′t′CihKi at its regular cost cit because of the
linearized start-up constraints. Generation above this
level is penalized with start-up costs ĉit (case (c)). If the
generator is affected by a cut, the question is whether
the additional benefit of the cut is higher than the gen-
erator’s start-up costs. If this is the case, we might con-
sider to run the generator at qL

iht � 1 to be awarded
this difference (case (e)). Case (d) is the complement-
ary case.
Because multiple Benders cuts with nonzero coeffi-

cients can occur after the first iteration of the NBD, the
splitting scheme for cases (b), (d), and (e) only works in
thefirst iteration.Thecondition [∀ j ∈ 
ht : ω̃s

ĳht � 0] there-
fore determines if the dual variables on constraints (37)
can be calculated or if an NLP has to be solved to
obtain them.
In case condition [∀ j ∈ 
ht : ω̃s

ĳht � 0] is true or we
are in the first iteration ( j � 1) of the NBD, the same
calculation as in Section 3.2.4 can be used to clear the
market and obtain equilibrium quantity Qht , equilib-
rium price Pht , and split generators’ levels q̃iht. The dual

variables on constraints (37) to construct Benders opti-
mality cut (38) during the backward step of the decom-
position algorithm can then be calculated as

ω̃s
i jh′t′ � βt ·max(Pht − cit , 0) ·CihKi + ω̃

s
ĳht ,

where (h′, t′) ∈Aht describes the previous hour.
Calculating the cut constant ω̃c

jh′t′ (see (40)), state
variables q̄L

iht, and objective function value W∗ht(γ̄, q̄L
ih′t′)

for each hour in the nested Benders decomposition
is achieved by mapping the splitted generators’ lev-
els q̃iht back to their original counterparts qiht. We omit
a detailed description at this point.

4. Computational Results
We compare the performance of the algorithms from
Section 3 with different settings to a monolithic ap-
proach, i.e., solving (PGEP)’s special cases as one
model, and a state-of-the-art GBD implementation
(Guan and Philpott 2011). The monolithic approach
requires a considerable amount of memory, and
only small instances can be solved within our pre-
scribed time limit of 48 hours. Additionally, we turn
all investment decisions into continuous variables;
decommission decisions remain binary to avoid par-
tial retirements. This simplification has several reasons.
First, it makes the monolithic approach more tractable
and we are able to solve larger instances within the
time constraints. Second, it allows us to focus our anal-
ysis in this section on the efficient solution of the large
subproblem. Our results show that the master prob-
lem’s share of solution time becomes negligible. Third,
and this goes back to Section 1, the purpose of (PGEP)
is to show investment trends in the presence of electric-
ity policies. The policy analysis we built the model for
does not demand binary investment decisions.
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4.1. Case Study Description and Model Instances
We model the ERCOT power system and represent
the zonal wholesale market in Texas using data from
2008. The power market in Texas can be seen as gener-
ally deregulated (although a few regions are still reg-
ulated, e.g., the cities Austin and San Antonio) and
fairly isolated from other states. We model 380 existing
generators in four load zones (Houston, North, South,
West). The total capacity in the system is approximately
82 GW, excluding generators that are used for cogener-
ation, not connected to the grid, or retired.
Investments into eight different technologies (or

aggregated generators) are possible: coal, integrated
gasification combined cycle (IGCC), natural gas com-
bined cycle (NGCC), natural gas combustion turbine
(NGCT), nuclear, solar, and two wind types. All tech-
nologies but wind can be built in each of the four zones
(wind can only be built in South, North, andWest). We
choose capacity Ki and KT

uv sufficiently large in order
for constraints (13) and (14) to be nonbinding.
The purpose of this section is not to carry out a

detailed case study but to present computational re-
sults of the algorithms from Section 3. We therefore
omit a more detailed description of the data and refer
the reader to Fell and Linn (2013) for the underlying
assumptions; the authors restrict their analysis to the
case of a linear demand function. To demonstrate our
dynamic overestimation approach, we also fit a partial-
log demand function (see Table 1 and Bushnell 2010)
using the same 2008 price and load data and elastic-
ity assumption as in Fell and Linn (2013). We model
scheduled and forced outage percentages of plants by
reducing their capacity evenly across one year. This is
a standard approach because no information is avail-
able when a downtime occurs in the (distant) future.
Additionally, we use start-up costs of $59/MW for coal
generators (Kumar et al. 2012), which reflect the aver-
age hot start costs of a generator. We use $200/MW as
a proxy for nuclear generators, which essentially keeps

Table 2. Instance Characteristics: Number of Rows (R), Number of Columns (C), Number of Nonzeroes (NZ), and Integer
Variables (Int)

(Core) (Core:T) (Core:R)

No. Hours Int R C NZ R C NZ R C NZ

1 100 389 0.04 0.04 0.16 0.04 0.04 0.17 0.04 0.04 0.16
2 200 389 0.08 0.08 0.31 0.09 0.09 0.35 0.10 0.10 0.37
3 400 389 0.16 0.16 0.63 0.17 0.17 0.69 0.20 0.20 0.74
4 1,000 389 0.39 0.39 1.57 0.43 0.43 1.72 0.49 0.49 1.84
5 2,000 389 0.78 0.78 3.13 0.86 0.86 3.44 0.99 0.99 3.68
6 4,000 389 1.57 1.57 6.26 1.73 1.73 6.87 1.98 1.98 7.35
7 6,000 389 2.35 2.35 9.39 2.59 2.59 10.31 2.96 2.96 11.03
8 8,760 389 3.43 3.43 13.70 3.79 3.79 15.05 4.33 4.33 16.10
9 70,080 3,112 27.47 27.47 112.07 30.28 30.28 131.20 34.62 34.62 131.27

10 140,160 6,224 54.95 54.95 229.74 60.56 60.56 287.07 69.25 69.25 268.15
11 201,480 8,947 78.99 78.99 337.30 87.05 87.05 443.69 99.54 99.54 392.52

Note. All numbers in R, C, and NZ are in millions.

them from ramping at all. Unfortunately, we do not
have access to the transmission network data. However,
ERCOT provides data for commercially significant con-
straints (CSC) between the four zones, which repre-
sent both a physical and commercial restriction on
transmission in the system. Any transmission between
zones that exceeds the CSC is charged with a cost
for the corresponding power producer. We average
the publicly available 2008 CSC data to obtain annual
transmission constraints between the four load zones.
We assume $950 perMWandmile for transmission line
extensions and use the distance between the following
cities to calculate the cost FT

uvt: Dallas (North), Houston
(Houston), San Antonio (South), and Odessa (West).

The following instances of (PGEP)’s special cases
are then constructed. Table 2 shows the number of
hours and years modeled, and the size of the result-
ing instance if we solve the instance as a monolith.
The investment costs for new generators and transmis-
sion lines are scaled proportionally tomake investment
in all instances profitable. Furthermore, the annual
operation and maintenance costs are scaled to avoid
decommissioning for the smaller instances. Other-
wise, the algorithms of Section 3 would converge in
the first iteration. That being said, it proved difficult
to generate instances that had homogeneous conver-
gence performance and the number of iterations varies
significantly.

All data and GAMS files for the monolithic models
are provided in the supplemental material.

4.2. Results
We compare our approaches from Section 3 for prob-
lems (Core), (Core:T), and (Core:R) to a monolithic
approach and a classical GBD; i.e., the subproblem
is solved as a (series of) NLPs. Table 3 presents all
solution configurations tested. All algorithms are im-
plemented in GAMS 24.3.3. Mixed-integer quadratic
programming (MIQP) problems are solved with
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Table 3. Solution Approaches Compared

Linear Partial-log

Model Method Sequential Parallel Sequential Parallel

(Core) Monolith MIQP MIQP MINLP MINLP
GBD MILP+QP MILP+QP MILP+NLP MILP+NLP

Algorithm 3.2.1 MILP+LP MILP+LP MILP+LP MILP+LP
Algorithm 3.2.4 MILPa MILPa MILPa MILPa

(Core:T) Monolith — — MINLP MINLP
Algorithm 3.2.2 — — MILP+LP MILP+LP
Algorithm 3.2.5 — — MILP+LPa MILP+LPa

(Core:R) Monolith — — MINLP —
Algorithm 3.2.3 — — MILP+LP —
Algorithm 3.2.6 — — — —

Note. Cells show model classes for the monolith and Master+ Subproblem for the algorithms.
aDual variables in the subproblem are explicitly calculated.

Gurobi 5.6.2 and BONMINH 1.7, and the fastest solu-
tion time among the two is reported. MINLPs are
solved with BONMINH and its outer-approximation-
based branch-and-cut algorithm. We experimented
with all other commercial MINLP solvers in GAMS,
but they were significantly slower than BONMINH.
MILPs, LPs, and QPs are solved with Gurobi; NLPs in
the GBD are solved with Conopt 3.16C. We use default
settings for all solvers. The runs are carried out on a
Windows 7 64 bit machine with an Intel Core i7 CPU at
2.93 GHz and 12 GB memory. CPLEX was also tested
with default settings but had numerical issues both in
the monolithic approaches as well as algorithms and
was therefore dropped. In general, the models show
numerical instability due to the large integral terms
and small generator costs in the objective function.
Gurobi is able to handle these issues the best with
default settings, although we still observe varying iter-
ation numbers for different numbers of threads used.

Tables 4 and 5 present the results for (Core) on one
and four threads, respectively. As we expected, the LP
approximation of the subproblems significantly out-
performs the NLP approach. It must be noted that we
use parts of the market clearing algorithms presented
in Sections 3.2.4 and 3.2.5 (assuming transmission
constraints are nonbinding) to obtain the equilibrium
quantities in advance and improve the linear overesti-
mator before solving the subproblem for a specific γ̄.
What may be still surprising is that the iteration count
of the GBD approach does not differ from the LP
approach on average. We argue that this is due to the
superior numerical stability of the LP solver. In fact,
several of the larger instances were not solved to the
correct objective function value using GBD. Instance
11 does not converge at all because of an invalid cut in
iteration 19.
The LP-based algorithms significantly outperform

the monolithic approaches, especially for the larger
instances. The cut calculation approaches are faster

than the LP-based approaches by a factor of 10–20
on average and by up to a factor of 28. Further-
more, they are unaffected by the numerical instabil-
ity. The average time per iteration when using a linear
demand function compared to a partial-log demand
function in the LP-based approaches is not significantly
different, demonstrating the viability of the overesti-
mation approach. The parallelization factor for all algo-
rithms and instances is close to three on average. The
monolithic approach does not parallelize well in most
instances, although exceptions exist.

The algorithms for (Core:T) perform similarly to
their (Core) counterparts; see Table 6. Note the in-
creased average iteration count due to an increased
number of investment decisions. The hybrid cut calcu-
lation approach discussed in Section 3.2.5 reduces the
solution time by up to 75%, and approximately 10%
of the hours remain to be solved as an LP. The par-
allelization factor is generally lower than for (Core),
which is caused by an increased overhead in commu-
nication between GAMS and C# as well as GAMS’s
model updating facility.

The algorithm for (Core:R) is able to solve all but
the largest instance within 48 hours; see Table 7.
Instance 11 is in iteration 6 with a gap of 5.4 · 10−2.
The algorithm’s performance strongly depends on the
number of subsequent hours batched together, because
fewer NB iterations are necessary. This is due to fewer
nested Benders cuts and fewer overestimator updates.
However, a larger model batch takes longer to update
and, more importantly, longer to solve than the equiv-
alent number of small models. The cut calculation
approach in Section 3.2.6 describes an extreme case in
this regard. Because we can only calculate all neces-
sary primal and dual variable values if we consider
one hour at a time, we receive the combined effect of
many nested Benders cuts and frequent overestimator
updates. In addition, the nested Benders cuts are not
tight until the overestimator is sufficiently refined. Fur-
thermore, the calculation of variable values is mostly

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

2a
00

:1
39

8:
4:

6c
02

:d
cd

6:
f8

84
:3

02
0:

56
e3

] 
on

 0
9 

Se
pt

em
be

r 
20

24
, a

t 0
4:

16
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Lohmann and Rebennack: Benders Decomposition for a Power Expansion Model
Management Science, 2017, vol. 63, no. 6, pp. 2027–2048, ©2016 INFORMS 2045
Ta

bl
e
4.

Se
qu

en
tia

lR
es
ul
ts

fo
r(
C
or
e)
:S

ol
ut
io
n
Ti
m
e
(S
ol
ve

),
N
um

be
ro

fI
te
ra
tio

ns
U
nt
il
C
on

ve
rg
en

ce
(It
),
Ti
m
e
Sp

en
tS

ol
vi
ng

th
e
Su

bp
ro
bl
em

(S
ub

)

Li
ne

ar
de

m
an

d
fu
nc

tio
n

Pa
rt
ia
l-l
og

de
m
an

d
fu
nc

tio
n

M
on

ol
ith

G
BD

A
lg
or
ith

m
3.
2.
1

A
lg
or
ith

m
3.
2.
4

M
on

ol
ith

G
BD

A
lg
or
ith

m
3.
2.
1

A
lg
or
ith

m
3.
2.
4

G
ur
ob

i
BO

N
M
IN

H
BO

N
M
IN

H

N
o.

So
lv
e

So
lv
e

So
lv
e

It
Su

b
So

lv
e

It
Su

b
So

lv
e

It
Su

b
So

lv
e

So
lv
e

It
Su

b
So

lv
e

It
Su

b
So

lv
e

It
Su

b

1
5.

2
17
.7

7.
5

18
6.

6
8.

8
19

6.
3

0.
7

20
0.

1
41
.2

12
8.

4
29

12
6.

7
17
.1

30
10
.0

7.
0

27
0.

1
2

64
.8

50
.7

11
.4

19
10
.8

9.
8

18
7.

2
0.

9
22

0.
1

15
7.

4
22

8.
3

31
22

6.
4

15
.9

30
11
.3

2.
5

30
0.

2
3

31
.5

11
3.

7
20
.5

15
20
.0

10
.6

15
8.

2
0.

6
15

0.
2

8,
71

4.
4

49
2.

6
43

48
8.

1
28
.1

37
20
.4

6.
5

38
0.

5
4

1,
82

0.
9

36
7.

4
39
.1

12
38
.4

14
.3

12
11
.7

0.
7

12
0.

3
1,

31
5.

6
1,

00
6.

7
33

1,
00

3.
9

46
.4

37
37
.2

3.
7

34
1.

1
5

2,
84

1.
6

97
0.

0
12

4.
9

19
12

3.
3

39
.6

19
33
.3

1.
6

19
1.

0
5,

99
4.

4
2,

05
4.

5
40

2,
04

9.
4

81
.1

37
67
.4

6.
1

40
2.

7
6

5,
65

9.
3

3,
21

0.
5

13
7.

2
10

13
5.

8
37
.8

10
32
.3

1.
5

10
1.

1
8,

15
7.

2
1,

57
7.

8
10

1,
57

6.
1

38
.3

10
32
.5

2.
4

10
1.

5
7

29
,9

30
.2

b
21

0.
0

11
20

7.
9

62
.5

11
53
.9

2.
4

11
1.

9
b

4,
32

0.
0

17
4,

31
6.

3
95
.1

17
81
.4

4.
9

16
3.

7
8

15
7,

50
6.

0
b

28
6.

2
10

28
3.

4
80
.4

10
69
.1

3.
0

10
2.

5
b

3,
89

1.
8c

11
3,

88
8.

5
79
.0

10
67
.8

4.
0

10
3.

1
9

a
a

2,
45

0.
8

11
2,

44
6.

2
64

4.
3

11
61

9.
6

24
.7

11
19
.9

a
49
,1

49
.2

22
49
,1

34
.9

1,
09

3.
8

19
1,

04
5.

2
72
.6

20
54
.3

10
a

a
4,

53
5.

9
10

4,
52

9.
7

1,
19

1.
7

10
11

54
.8

49
.6

10
39
.8

a
52
,2

01
.2

c
9

52
,1

95
.5

1,
25

8.
0

11
1,

21
4.

3
82
.0

11
61
.4

11
a

a
6,

86
7.

5
11

6,
85

9.
1

1,
86

6.
9

11
1,

81
6.

7
71
.4

11
57
.3

a
b

19
—

9,
59

8.
8

54
9,

22
8.

4
64

0.
8

54
43

7.
6

N
ot
es
.
A
ll
tim

es
ar
e
in

se
co
nd

s.
C
on

ve
rg
en

ce
to
le
ra
nc

e
fo
ra

ll
al
go

rit
hm

sa
nd

re
la
tiv

e
ga

p
of

m
on

ol
ith

ic
m
od

el
si
s1

0−
6 .

a M
em

or
y
lim

it
of

12
G
B
re
ac
he

d.
b T
im

e
lim

it
of

48
ho

ur
sr

ea
ch

ed
.

c A
lg
or
ith

m
co
nv

er
ge

d
w
ith

w
ro
ng

ob
je
ct
iv
e
fu
nc

tio
n
va

lu
e
be

ca
us

e
of

nu
m
er
ic
al

in
st
ab

ili
ty

in
no

nl
in
ea
rs

ub
pr
ob

le
m
s.

Ta
bl
e
5.

Pa
ra
lle

lR
es
ul
ts

fo
r(
C
or
e)

w
ith

Fo
ur

Th
re
ad

s

Li
ne

ar
de

m
an

d
fu
nc

tio
n

Pa
rt
ia
l-l
og

de
m
an

d
fu
nc

tio
n

M
on

ol
ith

G
BD

A
lg
or
ith

m
3.
2.
1

A
lg
or
ith

m
3.
2.
4

M
on

ol
ith

G
BD

A
lg
or
ith

m
3.
2.
1

A
lg
or
ith

m
3.
2.
4

G
ur
ob

i
BO

N
M
IN

H
BO

N
M
IN

H

N
o.

So
lv
e

So
lv
e

So
lv
e

It
Su

b
So

lv
e

It
Su

b
So

lv
e

It
Su

b
So

lv
e

So
lv
e

It
Su

b
So

lv
e

It
Su

b
So

lv
e

It
Su

b

1
3.

9
21
.3

7.
8

17
7.

2
12
.9

19
8.

9
0.

7
17

0.
0

48
.4

30
.8

29
28
.1

20
.2

30
12
.8

4.
1

26
0.

1
2

11
.3

54
.4

8.
9

19
8.

1
10
.5

18
7.

7
1.

0
22

0.
1

22
7.

1
87
.4

31
85
.3

18
.3

31
13
.2

2.
9

30
0.

1
3

23
.5

11
8.

2
12
.8

15
12
.2

10
.0

15
7.

6
0.

6
15

0.
1

8,
90

1.
7

45
1.

4
43

44
7.

0
25
.3

37
17
.4

6.
5

42
0.

3
4

1,
07

1.
7

38
6.

1
19
.7

12
19
.0

13
.0

12
10
.4

0.
5

12
0.

1
1,

33
9.

8
1,

68
6.

2
33

1,
68

3.
2

40
.4

37
31
.2

3.
3

31
0.

4
5

2,
05

6.
9

99
3.

0
54
.2

19
52
.6

28
.0

19
21
.8

1.
1

19
0.

4
6,

17
0.

6
1,

32
1.

4
40

1,
31

6.
0

57
.1

40
42
.9

5.
3

38
1.

1
6

14
,7

87
.7

3,
15

6.
6

54
.5

10
52
.9

21
.7

10
16
.4

0.
8

10
0.

5
8,

13
3.

8
86

8.
2

10
86

6.
5

21
.9

10
16
.5

1.
6

10
0.

7
7

28
,7

66
.0

b
88
.7

11
86
.4

32
.4

11
24
.2

1.
2

11
0.

8
b

2,
25

4.
7

17
2,

25
0.

7
48
.7

17
36
.1

2.
9

16
1.

6
8

16
6,

38
2.

1
b

11
8.

1
10

11
5.

1
41
.2

10
31
.0

1.
5

10
1.

1
b

1,
99

2.
6c

11
1,

98
9.

2
39
.0

10
29
.2

2.
2

10
1.

3
9

a
a

1,
02

5.
0

11
1,

01
9.

8
23

6.
0

11
22

0.
0

12
.1

11
8.

3
a

23
,5

24
.2

22
23
,5

09
.6

42
1.

7
19

38
8.

8
37
.8

20
19
.7

10
a

a
1,

81
8.

3
10

1,
81

2.
1

42
4.

8
10

40
4.

1
24
.4

10
16
.7

a
24
,0

05
.9

c
9

24
,0

00
.3

46
7.

2
11

44
3.

8
39
.4

11
22
.7

11
a

a
2,

90
3.

4
11

2,
89

4.
3

67
4.

4
11

64
7.

5
34
.2

11
23
.3

a
b

19
—

3,
76

9.
9

54
3,

52
7.

0
33

9.
2

54
14

9.
9

N
ot
e.

Se
e
Ta

bl
e
4
fo
rc

ol
um

n
de

sc
rip

tio
ns

.
a M

em
or
y
lim

it
of

12
G
B
re
ac
he

d.
b T
im

e
lim

it
of

48
ho

ur
sr

ea
ch

ed
.

c A
lg
or
ith

m
co
nv

er
ge

d
w
ith

w
ro
ng

ob
je
ct
iv
e
fu
nc

tio
n
va

lu
e
be

ca
us

e
of

nu
m
er
ic
al

in
st
ab

ili
ty

in
no

nl
in
ea
rs

ub
pr
ob

le
m
s.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

2a
00

:1
39

8:
4:

6c
02

:d
cd

6:
f8

84
:3

02
0:

56
e3

] 
on

 0
9 

Se
pt

em
be

r 
20

24
, a

t 0
4:

16
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Lohmann and Rebennack: Benders Decomposition for a Power Expansion Model
2046 Management Science, 2017, vol. 63, no. 6, pp. 2027–2048, ©2016 INFORMS

Table 6. Results for (Core:T) with One and Four Threads: Percentage of Hours That Had to Be Solved in Hybrid
Algorithm 3.2.5 [% LP]

Sequential Parallel

Monolith Algorithm 3.2.2 Algorithm 3.2.5 Monolith Algorithm 3.2.2 Algorithm 3.2.5

No. Solve Solve It Sub Solve It Sub % LP Solve Solve It Sub Solve It Sub % LP

1 87.3 36.4 41 32.0 25.2 38 21.1 12.5 224.8 30.0 41 25.4 29.7 40 25.4 12.3
2 527.6 61.1 51 54.0 41.2 53 33.8 11.8 1,114.5 43.7 47 37.3 48.7 53 41.7 11.8
3 952.0 105.8 60 96.9 58.2 60 49.3 11.6 5,709.4 80.4 58 71.6 65.0 64 54.4 11.7
4 1,884.9 152.8 49 147.1 60.3 46 55.0 9.0 1,600.9 87.0 46 81.2 45.3 41 40.2 8.9
5 5,802.1 289.5 51 282.6 98.8 53 91.5 8.0 4,848.2 158.7 54 150.6 80.5 56 73.0 7.8
6 23,167.1 175.5 20 173.6 51.0 20 49.2 7.1 17,996.0 82.2 21 79.8 36.6 21 34.6 7.1
7 b 367.9 25 365.4 110.7 29 107.9 7.8 b 142.4 25 139.6 68.2 29 65.4 7.8
8 b 404.6 19 402.8 88.1 19 86.6 7.6 b 143.0 19 140.8 54.8 19 52.9 7.6
9 a 6,183.0 33 6,159.0 1,235.9 33 1,211.7 10.2 a 2,359.9 33 2,335.1 486.0 33 462.0 10.2

10 a 7,276.9 21 7,262.6 1,626.0 21 1,612.8 11.7 a 2,739.5 21 2,724.5 601.3 21 588.0 11.7
11 a 71,070.2 97 70,398.6 16,412.1 97 15,788.7 14.5 a 28,323.9 97 27,638.2 6,613.4 97 5,986.7 14.5

Note. See Table 4 for other column descriptions.
aMemory limit of 12 GB reached.
bTime limit of 48 hours reached.

Table 7. Results for (Core:R): Total Number of Nested Benders Iterations (NB It) and
Total Time Spent in Nested Benders Decomposition (NB time)

Monolith Algorithm 3.2.3

No. Solve Solve It NB It NB time

1 45.5 59.5 35 230 54.8
2 772.6 136.7 35 282 133.2
3 14,260.3 363.1 48 382 358.1
4 1,507.8 816.5 39 312 812.9
5 4,779.4 6,388.1 39 420 6,383.8
6 27,017.9 2,321.1 10 56 2,319.8
7 43,241.8 1,667.3 16 109 1,664.8
8 b 4,970.4 10 113 4,968.4
9 a 86,612.1 18 96 86,574.7
10 a 83,012.1 11 60 82,974.3
11 a b — —

Notes. The nested Benders convergence tolerance is set to 10−7. See Table 4 for other column
descriptions.

aMemory limit of 12 GB reached.
bTime limit of 48 hours reached.

Table 8. Best Algorithms for All Special Cases: Fastest Reported Monolith Across All Solvers and Number of Threads (Solve)
and Fastest Reported Algorithm Compared to the Fastest Monolith (Factor)

(Core) (Core:T) (Core:R)

Linear Partial-log

No. Solver Solve Factor Solve Factor Solve Factor Solve Factor

1 Gurobi 3.9(4) 5.7 41.2(1) 10.0 87.3(1) 3.5 45.5(1) 0.8
2 Gurobi 11.3(4) 12.4 157.4(1) 63.8 527.6(1) 12.8 772.6(1) 5.7
3 Gurobi 23.5(4) 40.9 8,714.4(1) 1,341.3 952.0(1) 16.4 14,260.3(1) 39.3
4 BONMINH 367.4(1) 713.4 1,315.6(1) 401.0 1,600.9(4) 35.3 1,507.8(1) 1.8
5 BONMINH 970.0(1) 909.9 5,994.4(1) 1,137.2 4,848.2(4) 60.2 4,779.4(1) 4.8
6 BONMINH 3,156.6(4) 3,740.0 8,133.8(4) 5,055.2 17,996.0(4) 492.2 27,017.9(1) 27.0
7 Gurobi 28,766.0(4) 23,179.7 a — a — 43,241.8(1) 43.2
8 Gurobi 157,506.0(1) 107,074.1 a — a — a —

Notes. All times are in seconds. The number of threads appears in parentheses under Solve.
aMemory or time limit reached.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

2a
00

:1
39

8:
4:

6c
02

:d
cd

6:
f8

84
:3

02
0:

56
e3

] 
on

 0
9 

Se
pt

em
be

r 
20

24
, a

t 0
4:

16
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Lohmann and Rebennack: Benders Decomposition for a Power Expansion Model
Management Science, 2017, vol. 63, no. 6, pp. 2027–2048, ©2016 INFORMS 2047

Table 9. Best Algorithms for (Core) with Linear and Partial-Log Demand Functions: Solve Time in Seconds for GBD (Solve)
and Factors Compared to GBD for the Other Columns (Factor)

Linear Partial-log

Sequential Parallel Sequential Parallel

GBD Alg. 3.2.1 Alg. 3.2.4 GBD Alg. 3.2.1 Alg. 3.2.4 GBD Alg. 3.2.1 Alg. 3.2.4 GBD Alg. 3.2.1 Alg. 3.2.4

No. Solve Factor Factor Solve Factor Factor Solve Factor Factor Solve Factor Factor

1 7.5 0.9 10.2 7.8 0.6 11.6 128.4 7.5 18.3 30.8 1.5 7.5
2 11.4 1.2 12.5 8.9 0.9 8.7 228.3 14.3 92.5 87.4 4.8 29.8
3 20.5 1.9 33.7 12.8 1.3 22.3 492.6 17.5 75.6 451.4 17.8 69.5
4 39.1 2.7 58.0 19.7 1.5 38.3 1,006.7 21.7 268.9 1,686.2 41.7 513.9
5 124.9 3.2 77.9 54.2 1.9 50.9 2,054.5 25.3 337.8 1,321.4 23.1 250.7
6 137.2 3.6 90.6 54.5 2.5 64.6 1,577.8 41.2 666.0 868.2 39.6 539.6
7 210.0 3.4 89.1 88.7 2.7 71.4 4,320.0 45.4 876.8 2,254.7 46.3 783.2
8 286.2 3.6 94.5 118.1 2.9 80.3 3,891.8a 49.3 963.3 1,992.6a 51.0 925.5
9 2,450.8 3.8 99.3 1,025.0 4.3 84.8 49,149.2 44.9 677.1 23,524.2 55.8 621.9
10 4,535.9 3.8 91.4 1,818.3 4.3 74.4 52,201.2a 41.5 636.3 24,005.9a 51.4 609.8
11 6,867.5 3.7 96.1 2,903.4 4.3 84.9 b — — b — —

aAlgorithm converged with wrong objective function value due to numerical instability in nonlinear subproblems.
bTime limit of 48 hours reached.

restricted to the first iteration. Our experiments show
that Algorithm 3.2.6 does work in general but performs
poorly in cases of heavy ramping activity. However, it
has the potential to outperform the LP-based algorithm
if we can handle multiple cuts. In this case, no overesti-
mator is required anymore and tight cuts are obtained
in every iteration, drastically reducing the number of
iterations.

A summary of the best monolith and the best algo-
rithm for each instance can be found in Table 8. The
direct cut calculation approaches clearly outperform
the purely LP-based and monolithic approaches. This
becomes evident in (Core) instance 8, for which Al-
gorithm 3.2.4 on four threads is faster than the best
monolith by a factor of 107,074. Table 9 compares the
state-of-the-art GBD implementation to the LP-based
and the cut calculation approaches. The GBD is out-
performed across all instances and numbers of threads.
In general, the fact that most Benders optimality cuts
are not tight in the early iterations does not have a
strong impact on the convergence performance. The
time used for solving themaster problems is not explic-
itly reported in Tables 4–7 but tends to be negligible.
For instance, the time spent in the subproblem of the
largest instance of (Core:T), which requires 97 itera-
tions, varies between 91% and 99%. The remaining
time is spent in themaster problems aswell as data dis-
tribution,which is considerable for the larger instances.
The non-subproblem time tends to represent a larger
fraction for the cut calculation approaches since the
subproblem, especially in the case of (Core), is solved
extremely efficiently.

5. Conclusion
The tailored algorithmswe present in thiswork outper-
form themonolithic approaches by one to five orders of

magnitude and solve all but onemodel instance to opti-
mality within 48 hours. In contrast, the largest instance
a monolithic approach is able to solve spans one year.
Our efficient cut calculation approach, which makes
the solution of mathematical programming problems
in the Benders subproblem obsolete, outperforms the
monolith in this instance by a factor of more than
100,000. The same algorithm is able to solve the over-
all largest instance, consisting of 79 million variables
and 79 million constraints, in 34.2 seconds on a stan-
dard desktop computer. To our knowledge, we have
therefore solved, for our specific problem, the largest
reported convex MINLP model within one minute of
CPU time.

A comparison of our algorithms to classical gener-
alized Benders, in which the nonlinear subproblems
are solved as NLPs, shows tremendous improvements,
both with respect to computational speed as well as
numerical stability. This proves the viability of over-
estimating the NLP subproblem instead of solving it
directly, although the Benders optimality cuts may not
be tight in early Benders iterations.
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