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Abstract
We discuss stochastic optimization problems under distributional ambiguity. The distribu-
tional uncertainty is captured by considering an entire family of distributions. Because we
assume the existence of data, we can consider confidence regions for the different estimators
of the parameters of the distributions. Based on the definition of an appropriate estimator
in the interior of the resulting confidence region, we propose a new data-driven stochastic
optimization problem. This new approach applies the idea of a-posteriori Bayesian methods
to the confidence region. We are able to prove that the expected value, over all observations
and all possible distributions, of the optimal objective function of the proposed stochastic
optimization problem is bounded by a constant. This constant is small for a sufficiently large
i.i.d. sample size and depends on the chosen confidence level and the size of the confidence
region. We demonstrate the utility of the new optimization approach on a Newsvendor and a
reliability problem.

Keywords Data-driven stochastic optimization · Bayesian approach · Distributional
ambiguity · Distributionally robust stochastic optimization · Newsvendor problem

1 Introduction

Since the seminal work by Dantzig [16] and Beale [4], the stochastic (linear) optimization
problem has been well-studied by assuming the knowledge of the involved probability distri-
bution [11, 34, 38, 39, 52]. However, in practical applications, the distribution is rarely known
with sufficient accuracy, even if good estimators are at hand. Stability studies of stochastic
optimization problems can yield important insights about the sensitivity of the computed
optimal solutions if the assumed distribution does not mature [37, 44, 47, 48]. To explic-
itly take the uncertainty around the involved distribution into account, the field of stochastic
optimization under distributional ambiguity has emerged, which assumes that the underlying
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distribution is part of a family of distributions [35, chapter 7]. This paper proposes a new
data-driven stochastic optimization approach under distributional ambiguity.

The key idea of all stochastic optimization approaches under distributional ambiguity is to
optimize some objective function over an entire family of distributions. Such an optimization
problem is well-defined as soon as an appropriate metric has been chosen. To this end, two
differentmethods have emerged:Bayesian andminimax approaches—minimax is also known
as distributionally robust stochastic optimization in the context of our paper. The Bayesian
approach assumes the knowledge of some a-priori distribution; if such an a-priori distribution
is known, then the problem reduces to classical stochastic optimization.Minimax approaches
take only the worst case distribution into account, instead of the entire family of distributions.
This may result in over-conservative solutions [51, 53]; careful construction of the family of
distributions can mitigate this conservatism [9].

In this paper, we follow the recent trend of data-driven optimization [2, 10, 14, 45].We use
observations to construct confidence regions. Specifically, we assume the parametric case,
i.e., the family of distributions is parametrized by θ . A confidence region at level (1 − α)

is then constructed from the observations for the parameter θ . Therefore, we assume that
the set of parameter vectors is compact and that we know a safe region which contains the
true parameter, i.e., θ is a vector that lies in some compact multidimensional set. For such a
situation, minimax approaches typically optimize against the worst case distribution in either
the safe region or some kind of confidence region taking the observations into account. In
contrast, the Bayesian approach assumes the knowledge of a distribution of the parameter
θ . This distribution is then typically estimated by a uniform distribution or a conditional
uniform distribution taking the observations into account, for the safe region. The resulting
optimization problem is then obtained by taking the expected value, where the parameter θ

is treated as a random vector of the associated stochastic optimization problem (which is a
function of θ ).

In our proposed approach, we combine the idea of the Bayesian method with a confidence
region in a unique way. First, we define an appropriate estimator inside the calculated confi-
dence region. In a second step, a new confidence region around this estimator is constructed.
Then, a Bayesian-type optimization model is set up for the resulting confidence region. The
careful construction of the new stochastic optimization problem allows us to study the quality
of the optimal solutions obtained. Because this data-driven stochastic optimization approach
takes only the available observations into account, the solution quality analysis needs to
consider all possible observations and all possible distributions of the parameter θ , in the
Bayesian sense. Therefore, we build the expectation with respect to all possible observa-
tions. This allows us to bound the optimal objective function in the expected value sense.

The derived bound is valid not only for the parameters contained in the confidence region,
but for all parameters of the distribution in the safe region. Furthermore, it holds for any finite
number of observations. This bound depends on the user-specified confidence level and three
terms characterizing the quality of the estimation methods and the set of parameters for the
distributions chosen. We are able to show that the derived bound converges to zero with an
increase in the number of observations.

This paper contributes to the body of literature on stochastic optimization under distribu-
tional ambiguity in the following unique ways:

– We propose a new data-driven stochastic optimization model for stochastic optimization
under distributional ambiguity (Definition 6).

– We analyze optimal solutions of the proposed model to provide optimality bounds (The-
orem 1). We further show that the proposed data-driven stochastic optimization model

123



Journal of Global Optimization (2022) 84:255–293 257

reduces to stochastic optimization in case of a known parameter (Corollary 1) and that
the optimality bound converges to zero for an infinite number of observations (Corollary
2); two desired properties which show the consistency of the proposed model. We show
that our approach contains the Bayesian approach as a special case, yielding a new bound
for the Bayesian approach (Corollary 3). Further, we use the same proof technique to
yield a classical result for the naïve case, where only an estimator is used for θ instead
of a confidence region (Corollary 4).

– We provide computational results for two different problems: a Newsvendor and a reli-
ability problem.

The remainder of the paper is organized as follows. We present the mathematical founda-
tions and notation of stochastic optimization under distributional ambiguity and review the
literature on both Bayesian and distributionally robust stochastic optimization approaches in
Sect. 2. In Sect. 3, we define confidence regions and how they can be computed by combining
different estimators. Then, the main contributions are presented in Sect. 4. We suggest a new
data-driven methodology towards stochastic optimization under distributional ambiguity and
analyze its solution quality with respect to the expected value of all observations and all a-
priori distributions. Further, we study the behavior of the optimal solutions for an increase
in the number of available observations, i.e., the asymptotic case. We also discuss the com-
plexity of the proposed model. In Sect. 5, we apply the proof ideas towards the Bayesian
approach and an naïve approach using only one estimator. We then present computational
results in Sect. 6 for two different problems, before we conclude with Sect. 7.

We denote the decision variables by vector x and the decision function by d(·) or simply
d . Observations are denoted by a capital X.

2 Stochastic optimization problem under distributional ambiguity

Let there be l (unknown) parameters which build a random vector denoted by ξ , i.e., the
function ξ : � → R

l is measurable w.r.t. a σ -algebra A on �. Then, EP denotes the
expectation, given the distribution P of this random vector ξ .

We are interested in solving the following stochastic optimization problem

min
{
EP
[
L(x, ξ)

] : x ∈ X

}
(1)

for a continuous loss function L : Rn ×R
l → R and a feasible region X ⊂ R

n . The feasible
region, X, is assumed to be non-empty and compact. It might be given by a collection of
constraints

X = {x : H(x) ≤ 0
}

with function H : Rn → R
m . As such, the m constraints are all deterministic. The optimiza-

tion problem (1) has n here-and-now decision variables, collected in vector x.
We follow the spirit of stochastic optimization under distributional ambiguity and assume

that the distribution P , the “true” distribution of ξ , is not known, but instead an element of a
non-empty set P . The set P can contain all kinds of probability distributions. However, we
make the following assumptions:

Assumption 1 The set of distributions of the random vector ξ has the form

P = (Pθ

)
θ∈�

with � ⊂ R
d̃ (2)

with � being compact. ��
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The non-emptiness and compactness of X together with the continuity of L(·, ·) imply
that the optimization problems minx∈X EP

[
L(x, ξ)

]
and maxx∈X EP

[
L(x, ξ)

]
admit a finite

extremum. Together with the compactness assumption of�, the corresponding minimization
and maximization problems over P ∈ P are finite as well; we exclude the trivial case that
the minimum equals the maximum. This allows us to present the main theoretical results of
this paper as absolute bounds, rather than relative bounds, by considering the normalized
function

Q(x, ξ) := L(x, ξ) − minx∈X,P∈P EP
[
L(x, ξ)

]

maxx∈X,P∈P EP
[
L(x, ξ)

]− minx∈X,P∈P EP
[
L(x, ξ)

] , (3)

and the corresponding stochastic optimization problem

(SP) z∗ := min
{
EP
[
Q(x, ξ)

] : x ∈ X

}
.

This normalization is constructed such that 0 ≤ EP
[
Q(x, ξ)

] ≤ 1 for all x ∈ X; note that
this does not necessarily hold for Q(x, ξ).

Assumption 1 assumes the parametric case with an unknown d̃-dimensional parameter
θ . With other words, the form of the distribution is known but its coefficients or parameters
are unknown. Then,

P̃ := {Pθ1 , . . . , PθK

}
(4)

is a discretization of (2) and therefore

�0 := {θ1, . . . , θK
}

(5)

is a discretization of �, for some K ∈ N. The set of all distributions on the discrete set P̃ ,
as defined in (4) and (5), creates the (K − 1)-dimensional standard simplex �K−1 ⊂ R

K .
With other words, assuming that θ is a random vector, then the discretizations (4) and (5)
yield a discrete random vector with K possible realizations. The collection of all possible
distributions with K realizations is then given by �K−1.

To avoid notational ambiguity, we distinguish between an element of θ ∈ � and the
true parameter, which we denote by θ̃ . Given the situation that the “true” distribution P is
unknown,we cannot expect to solve problem (SP). In fact,we call the stochastic optimization
problem (SP) the baseline problem for

P = Pθ̃ .

Our methodology assumes the availability of R data points in R
l .

Assumption 2 We have R realizations X1, . . . ,XR with Xr ∈ R
l , r = 1, . . . , R, of the

random vector ξ and assume that the corresponding random vectors ξ1, . . . , ξR are i.i.d.
random vectors.We denote ζ = (ξ1, . . . , ξR) and assume that the distribution of ξi is discrete
or has density f (·) with respect to the Lebesgue measure in Rl . ��
Note that we do not require the independence (nor the identical distribution) of the l coordi-
nates of ξr , r = 1, . . . , R, in Assumption 2.

We also refer to realizations as observations or data throughout the paper. For our discus-
sions of data-driven Bayesian approaches, we require

Definition 1 Let s ∈ �K−1. As in the Bayesian approach, s = (s1, . . . , sK ) is called a-priori
distribution, i.e., sk is the probability that θ as a random vector has value θk for k = 1, . . . , K .
For a given a-priori distribution s, sk(X) is defined as the conditional probability that θ as
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a random vector has value θk , under the condition that ζ has realization X. This conditional
distribution s(X) is called the a-posteriori distribution and can be calculated by

sk(X) =
⎧⎨
⎩

P(X|θk )sk∑K
j=1 P(X|θ j )s j , if ζ is discrete random vector

f (X|θk )sk∑K
j=1 f (X|θ j )s j , if ζ is continuous random vector

where f (·|θk) is the density of ζ , if θ = θk . ��

Two main streams of research have emerged to solve stochastic optimization problems
under distributional ambiguity, where P ∈ P: Bayes and Minimax.

2.1 Bayesian approach

Assuming the discrete case �0, in the Bayesian approach, the unknown distribution P (or
parameter θ ) is interpreted as a realization of a discrete random vector. Therefore, we assume
an a-priori distribution s = (s1, . . . , sK ) on the discrete set of distributions P̃ . In the Bayesian
approach, typically the discrete uniform distribution is chosen by default on P̃ , i.e., si =
1
K , i ∈ {1, . . . , K }, if no special a-priori distribution is given.We obtain the a-priori Bayesian
problem, also called the mean-risk stochastic optimization problem

(B) z∗B := min

{ K∑
k=1

sk · Eθk

[
Q(x, ξ)

] : x ∈ X

}
,

where we write Eθk [·] for ease of notation, instead of EPθk
[·] stating that the expected value

is taken for random vector ξ following the distribution Pθk with parameter θk . Any optimal
solution to (B) is called the Bayesian solution to the stochastic optimization problem under
distributional ambiguity.

We can define an analogous a-posteriori Bayesian approach, by taking the data X into
account to yield

(B(X)
)

z∗B(X) := min

{ K∑
k=1

sk(X) · Eθk

[
Q(x, ξ)

] : x ∈ X

}
.

We observe that the optimal solution of
(B(X)

)
depends on the data X, i.e., a different set of

realizations of the observation ζ may lead to a different optimal solution.
Recently, Wu et al. [57] proposed a data-driven Bayesian optimization approach. The

authors apply a risk functional towards the expected value Eθk

[
Q(x, ξ)

]
. This risk func-

tional contains the a-posteriori distribution, as a mapping from the random vector to the real
numbers. Mean, mean-variance, value-at-risk (VaR) and conditional value-at-risk (CVaR)
are considered as four different risk measures. This Bayesian risk optimization framework
was already proposed before [60], whereas tailored solution strategies were first presented
in [61]. For the case of an infinite number of observations, Wu et al. [57] prove several con-
sistency and asymptotic results. This is the main theoretical difference to our work, where
we establish bounds for a finite number of observations; cf. Theorem 1.
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2.2 Minimax: distributionally robust stochastic optimization

Robust optimization approaches typically do not require probabilistic information but rely
solely on the range (support) of the parameters. Then, robust optimization seeks a solution
which optimizes against the worst among all possible realizations of the parameters [6].

If a set of distributions P̃ is given instead of a single one, recent work has applied robust
approaches for stochastic optimization problems under distributional ambiguity in the fol-
lowing minimax sense [59]:

(DRSP) z∗DRSP := min
x

max
θ∈�0

{
Eθ

[
Q(x, ξ)

] : x ∈ X

}
. (6)

This line of research is called distributionally robust stochastic optimization. In this context,
the set of distributions P̃ is called the ambiguity set.

An a-posteriori approach is obtained when taking the observationsX into account to yield
a new ambiguity set P̃(X); see Sect. 3.3. More precisely, the data are used to construct a
probability model with an associated “confidence region” which then yields the ambiguity
set (as a subset of P̃). Chapter 7 in the book by Pflug and Pichler [35] explains this concept
very clearly. However, using an a-posteriori ambiguity set, constructed in such a way, is
“dangerous” in the sense that we lose control over the error in the set of distributions “outside”
P̃(X); see Sect. 4.

Because there is a growing body of literature in the area of distributionally robust stochastic
optimization [49], we restrict our discussions on a few truly outstanding papers. The papers
on distributionally robust stochastic optimization can be classified by the way the ambiguity
sets are constructed. There are several papers which restrict the set of probability distributions
by limiting its maximal deviation to a reference distribution, the baseline model [13, 27].
Others restrict the set of probability distributions by some conical constraint [17] or derive
bounds via two measurable sets [50]. Also, methods have been proposed which restrict the
moments of the probability distributions considered [24, 26, 28]. Finally, one can also restrict
the set of possible distributions by some ball in theWasserstein distance sense [36]. A general
class of ambiguity sets was also proposed which contains most published ambiguity sets as
special cases [56].

Data-driven distributionally robust stochastic optimization approaches considering confi-
dence regions have been proposed by various groups. Delage andYe [17] construct ambiguity
sets from data for mean and covariance matrices to yield distributionally robust stochastic
optimization problemswhich allow for probabilistic performance guarantees. Bertsimas et al.
[8] connect sample average approximation, distributionally robust optimization and hypoth-
esis testing of goodness-of-fit. The resulting robust sample average approximation makes use
of a refined ambiguity set construction and confidence regions to establish necessary and suf-
ficient conditions on the hypothesis test to ensure that the resulting solution satisfies certain
(probabilistic) finite-sample and asymptotic performance guarantees in a variety of para-
metric, and non-parametric settings. This idea has been extended to so-called Wasserstein
sets establishing statistical guarantees on distributionally robust policies [19]. Ambiguity
sets, composed of all distributions within a certain Wassertein distance with respect to an
empirical distribution (for given observations) were also proposed and analyzed [21]. In an
earlier work, Wang et al. [55] construct ambiguity sets by considering distributions which
achieve a certain level of likelihood, given the set of observations. Gupta [25] uses Bayesian
techniques to construct ambiguity sets which have very desirable features—they are opti-
mal in some sense. In addition, the constructed ambiguity sets outperform many popular
ambiguity sets previously proposed in the literature. The tutorial by Bayraksan [3] discusses
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the construction of data-driven ambiguity sets by limiting the phi-divergence of all consid-
ered distributions with respect to some nominal distribution. Agrawal et al. [1] quantify the
maximal loss incurred when correlations among data are ignored via distributionally robust
stochastic optimization problems. All papers in the stream of research on data-driven distri-
butionally robust stochastic optimization approaches have the following twomain differences
to the proposed approach in this paper: (1) these approaches are worst-case approaches in the
minimax-sense, while we are proposing the optimization of an expected value, and (2) the
performance guarantees are either probabilistic (i.e., with a high probability) or asymptotic
(i.e., for an infinite number of observations), while our guarantees are deterministic and hold
for any number of observations in the entire parameter space.

Van Parys et al. [54] also deal with data-driven distribution optimization and make a
special kind of asymptotic optimal decision. Similar to our work, they also provide a series
of finite sample size results. There are, however, some fundamental differences to the present
paper. First, the approach is robust and not Bayesian-like softened robust. Second, the data
are used for a predictor (and prescriptor) of the cost function. In contrast, we have chosen
an estimator (as a function of the data) for the parameter that defines the distribution of the
random parameter vector. Thirdly, we can bound the expected value, over all observations
and all possible distributions, of the optimal objective function of the proposed stochastic
optimization problem for a finite number of observations by a constant, and accordingly the
asymptotic analysis yields the convergence of this constant to zero. This stands in contrast
to the finite sample size results from Van Parys et al. [54], for example their Theorem 8, in
that they assume the asymptotic distribution P∞ (i.e., the sample path distribution) while
our results hold for all a-priori distributions, cf. Theorem 1.

Soft robust optimization [5] and light robustness [20] have been suggested, for instance, to
overcome the conservativeness of robust optimization under distributional ambiguity. Robust
stochastic optimization approaches under ambiguity have received special attention in finan-
cial applications by considering ambiguous risk and utility functions [22, 62].

3 Application of estimationmethods

Per construction, θ̃ is included in the set �. However, in many applications, it is sufficient
that this condition is met with probability less then 1, say equal to (1 − α) with 0 < α < 1,
for a subset of �. The value α is a user input and should be chosen as a good compromise
between the level (1 − α) and the size of the corresponding subset (i.e., confidence region).
Loosely speaking, the level (1−α) allows the application of confidence regions instead of�.

3.1 Confidence region

We are seeking a confidence region, determined for an estimator T = T (ζ ), where we rely
on the usual definition of a (point) estimator, i.e., a measurable function T = T (ζ ) : 
 →
� ⊂ R

d , according to the following

Definition 2 Let ζ(�) =: 
 ⊂ R
l·R . For α ∈ (0, 1), we denote a subset R(α, T ) of 
 × �

as confidence region to T at the level (1 − α), if

(a) R
(
α, T (ζ )

) 
 T (ζ ), and

(b)
{
υ ∈ 
 : (υ, θ) ∈ R(α, T )

}
is measurable for all θ ∈ �, and

(c) Pθ

{
υ ∈ 
 : (υ, θ) ∈ R(α, T )

} ≥ (1 − α) for all θ ∈ �. ��
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In Definition 2, (a) requires that any estimator T is, for all realizations of ζ , contained in the
confidence region R(α, T ) as a subset of �. (b) and (c) ensure that the confidence region
R(α, T ) contains the true parameter θ̃ with probability ≥ (1 − α). We remark that in the
literature, confidence regions are also defined without any estimator.

For the following, we are given the realization X of ζ .

Definition 3 We call

R
(
α, T (X)

) := {θ ∈ � : (X, θ) ∈ R(α, T )
} ⊆ �

the a-posteriori confidence region to T (X) at the level (1 − α). ��

3.2 Integrated confidence region

3.2.1 Integration of confidence regions

If more than one estimation procedure is at hand, say V estimators T1, . . . , TV , we can
intersect their corresponding a-posteriori confidence regions R

(
αν, Tν(X)

)
at the level

(1 − αν), ν = 1, . . . , V .
The idea is to choose, for every Tν , (1−α/V ) as the level of the corresponding confidence

region and to intersect all a-posteriori confidence regions as follows

I (α,X) :=
V⋂

ν=1

R
( α

V
, Tν(X)

)
. (7)

Note that I (α,X) is in general not an a-posteriori confidence region according to Defintion
3, as an appropriate estimator T is missing. However, if only one estimator is at hand, i.e.,
V = 1, then we denote the appropriate a-posteriori confidence region by I (α,X) as well.

Remark 1 The choice of the αν values as α
V is arbitrary. Any other assignment is fine as well,

as long as αν ∈ [0, 1] and condition α =∑V
ν=1 αν holds. ��

Remark 1 holds because the probability that
⋂V

ν=1 R
(
αν, Tν(X)

)
does not contain θ̃ is the

probability that either of the confidence regions R
(
αν, Tν(X)

)
does not contain θ̃ , which is

less than or equal to
∑V

ν=1 αν = α.
Figure 1 illustrates the resulting region I

(
α,X
)
when two a-posteriori confidence regions

are integrated, i.e., intersected.

3.2.2 Integrated confidence region with a new estimator

To transform I (α,X) into an a-posteriori confidence region, we require a suitable estimator
To. Such an estimator is defined in the following, together with the resulting a-posteriori
confidence region.

For any given α, with 0 < α < 1, we define an estimator To(α,X) of θ as an element of
I (α,X) which minimizes the squared maximal Euclidean distance, i.e.,

To(α,X) := argminτ∈I (α,X) max
θ∈I (α,X)

||τ − θ ||22 ∀X. (8)

The motivation of definition (8) is to obtain a parameter which has the minimal distance
to the “true” parameter θ̃ at the level (1 − α), i.e., with a great probability. This is an a-
posteriori-like result. The mathematical reason for this particular choice of To becomes clear
with the proof of Theorem 1 on page 13.

123



Journal of Global Optimization (2022) 84:255–293 263

Remark 2 The set

H(To) :=
{
(ζ, θ) ∈ 
 × � : ||To(α, ζ ) − θ ||2 ≤ ε(α, ζ )

}

with

ε(α, ζ ) := max
θ ′∈I (α,ζ )

||To(α, ζ ) − θ ′||2

is also a confidence region at the level (1 − α). ��
We define the expected maximal Euclidean distance of all elements in I (α,X) as

ε(α) := E
[
ε(α, ζ )

]
. (9)

Note that ε(α) ≥ 0 because ε(α, ζ ) ≥ 0.

Remark 3 The set

H̃
(
To(α,X)

) :=
{
θ ∈ � : ||To(α,X) − θ ||2 ≤ ε(α,X)

}

is an a-posteriori confidence region to estimator To at level (1 − α) and, with that, also a
subset of � . �

In the remainder of the paper, we mostly use H̃
(
To(α,X)

)
. Figure 2 illustrates the estimator

To(α,X) and H̃
(
To(α,X)

)
, corresponding to Fig. 1.

Fig. 1 The resulting intersection for two estimationmethods T1 and T2 with α1+α2 = α. Each dot symbolizes
a θk ∈ �0
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Fig. 2 The estimator To(α,X) for I
(
α,X
)
together with H̃

(
To(α,X)

)

3.3 A-posteriori minimax using confidence region

Any (a-posteriori) region I (α,X) can be readily applied towards the minimax approach. The
idea is to replace the ambiguity set P̃ by I (α,X) ∩ �0.

We obtain the DRSP problem at level (1 − α)

(DRSPα(X)
)

z∗DRSP := min
x

max
θ∈I (α,X)∩�0

{
Eθ

[
Q(x, ξ)

] : x ∈ X

}
. (10)

For any realization X of observation ζ , I (α,X) is a subset of �, and hence the robustness
of (DRSPα) is somewhat “softened.”

4 Stochastic optimization with confidence level for continuum2

Based on the a-posteriori confidence region H̃
(
To(α,X)

)
to estimator To, we propose a

new stochastic optimization problem in an effort to solve stochastic optimization problems
under distributional ambiguity. The key idea is the combination of the a-posteriori Bayesian
approach with our (integrated) confidence region.

123



Journal of Global Optimization (2022) 84:255–293 265

4.1 Decision functions andmean-risk

Additionally to the new estimator To(X) and its corresponding confidence region, we pro-
pose a novel solution for the stochastic optimization problem with distribution ambiguity
minimizing the mean-risk. For that we require the following definitions.

Definition 4 Ameasurable function d = d(ζ ) : 
 → X is called a feasible decision function
for (SP). We collect all such feasible decision functions d in the set D. �

The decision function formalizes the concept that any solution of an a-posteriori optimization
problem depends on the data X. With that, any solution is a function of the observation ζ .

Definition 5 We define the risk function in θ ∈ � for decision function d ∈ D as

risk(d, θ) :=
∫




Eθ

[
Q(d(y1, . . . , yR), ξ)

] R∏
r=1

f (yr |θ)dy1 . . . dyR .

For any distribution W on � (in the a-priori sense) with Lipschitz-continuous density w(θ),
the mean-risk for decision function d ∈ D is then defined as

RW(d) :=
∫

�

risk(d, θ)w(θ)dθ.

The mean-risk for d ∈ D is also called the Bayes risk for d . ��

Because � is compact, it is especially a Lebesgue-measurable set. The risk is defined as
the expected value of the function Eθ

[
Q(d(ζ ), ξ)

]
of random vector ζ . As such, the risk

is an average of the objective function value for the decision function d of the stochastic
optimization problem (SP). The mean-risk is then the average risk(d, θ) over all parameters
θ ∈ �. The risk function is of interest because the true value of the parameter θ is unknown.

4.2 The proposed solution

We propose a new kind of “softened robustness” in an effort to avoid the often criticized
“over-conservatism” of the minimax criterion. This proposed alternative is a Bayesian-like
approach. In this context, “robust” means that the Bayesian solution remains approximately
optimal in a neighborhood (of some appropriate metric space of a-priori distributions) around
the given a-priori distribution, or around the a-priori uniformdistribution (if none is specified).
While the Bayesian approach can overcome the aforementioned “over-conservatism”, it is
sensitive to the choice of the a-priori distribution and thus, robustness with respect to this
distribution is of interest, cf. [7] and [23, chapters 3.6 and 3.7]. This is what we propose in
this paper.

This new kind of robustness is intuitively successful, if, for the computation of the a-
posteriori-Bayes solution, instead of the entire parameter space�, a confidence region around
an efficient estimator To is chosen, whose diameter is small—in the sense that the resulting
a-posteriori confidence region is smaller than �—with a high confidence level (i.e., small
α). This is the motivation for us to define the a-posteriori confidence region H̃(To

(
α,X)

)
for

the estimator To.
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Definition 6 For any given data X and level (1 − α), consider the data-driven stochastic
optimization problem

(BP∗
α(X)

)
within our best confidence region H̃

(
To(α,X)

)

z∗B∗(X) := min

{
const ·

∫

H̃(To(α,X))

( R∏
r=1

f (Xr |θ)

)
Eθ

[
Q(x, ξ)

]
dθ : x ∈ X

}
, (11)

with constant

const := 1
∫
H̃(To(α,X))

(∏R
r=1 f (Xr |θ)

)
dθ

.

We denote a solution of the data-driven stochastic optimization problem
(BP∗

α(X)
)
as

B∗(α,X). �

The proposed new optimization model
(BP∗

α(X)
)
represents a Bayes-like solution.

Therefore, the appropriate optimality criterion is the Bayesian risk. The Bayesian risk, as
defined in Definition 5, is an average with respect to the posterior distribution of the mean
risk as a function of θ .

Remark 4 Solutions B∗(α,X) are well-defined because
(BP∗

α(X)
)
optimizes a continuous

function of x over a compact set X; we assume that Q is a continuous function.

4.2.1 The main property of B∗(˛, X)

Theorem 1 provides the main properties of solutions B∗(α,X) on the continuum � for any
finite number of observations. We utilize this Theorem do derive similar bounds for the
Bayesian approach and the naïve approach.

First, for fixed α, we define

η∗(α) :=
{
min
{
ε(α), std(To)

}
, if To is an unbiased estimator ofθ,

ε(α), o/w,
(12)

with ε(α) as defined in (9) and the standard deviation std(To) of To. Especially if only one
estimator is used, then it is particularly easy to check whether or not To is unbiased. The
main result is then stated as:

Theorem 1 Let � be continuous, non-empty and compact; L(·, ·) be continuous and non-
constant on the non-empty compactum X and let Assumption 2 hold. For any data X and
level (1 − α), let B∗(α,X) be a solution of

(BP∗
α(X)

)
. Then, for any distribution W on �

(in the a-priori sense) with Lipschitz-continuous density w(θ) and Lipschitz constant lW as
well as η∗(α) as defined in (12) and Lebesgue measure λ(�) of �, it holds that

RW
(
B∗(α, ζ )

) ≤ RW
(
d(ζ )
)+ α + η∗(α) · λ(�) · lW ∀d ∈ D. (13)

Proof For any feasible decision function d ∈ D, θ ∈ � and y ∈ 
, we define for notational
convenience

�
(
d(y), θ

) := Eθ

[
Q
(
B∗(α, y), ξ

)− Q
(
d(y), ξ

)]
.

Then

|�(d(y), θ
)| ≤ 1 ∀y ∈ 
, θ ∈ �, d ∈ D. (14)
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1. Case: To not unbiased:
In this case, η∗(α) = ε(α). By definition and using the Lebesgue integral

RW
(
B∗(α, ζ )

)− RW
(
d(ζ )
)

=
∫

�

∫




�
(
d(y), θ

) R∏
r=1

f (yr |θ)dy1 . . . dyRw(θ)dθ

=
∫

�

∫

{y∈
 : ||To(α,y)−θ ||2≤ε(α,y)}
�
(
d(y), θ

) R∏
r=1

f (yr |θ)dy1 . . . dyRw(θ)dθ

(15a)

+
∫

�

∫

{y∈
 : ||To(α,y)−θ ||2>ε(α,y)}
�
(
d(y), θ

) R∏
r=1

f (yr |θ)dy1 . . . dyRw(θ)dθ.

(15b)

The first term, (15a), is re-written as

∫

�

∫

{y∈
 : ||To(α,y)−θ ||2≤ε(α,y)}
�
(
d(y), θ

) R∏
r=1

f (yr |θ)dy1 . . . dyRw(θ)dθ

=
∫




∫

{θ∈� : ||To(α,y)−θ ||2≤ε(α,y)}
�
(
d(y), θ

)
w
(
To(α, y)

) R∏
r=1

f (yr |θ)dθdy1 . . . dyR

(16a)

+
∫




∫

{θ∈� : ||To(α,y)−θ ||2≤ε(α,y)}
�
(
d(y), θ

)(
w(θ) − w

(
To(α, y)

))

R∏
r=1

f (yr |θ)dθdy1 . . . dyR . (16b)

For any y ∈ 
, according to the definition of B∗(α, y),

∫

{θ∈� : ||To(α,y)−θ ||2≤ε(α,y)}
�
(
d(y), θ

) R∏
r=1

f (yr |θ)dθ

=
∫

H̃(To(α,y))
�
(
d(y), θ

) R∏
r=1

f (yr |θ)dθ ≤ 0. (17)

Therefore (16a) is also ≤ 0.
By using the Lipschitz constant lW, (16b) can be estimated by
∫




∫

{θ∈� : ||To(α,y)−θ ||2≤ε(α,y)}
�
(
d(y), θ

)(
w(θ) − w

(
To(α, y)

))

R∏
r=1

f (yr |θ)dθdy1 . . . dyR

≤
∫




∫

{θ∈� : ||To(α,y)−θ ||2≤ε(α,y)}
lW‖θ − To(α, y)‖2

R∏
r=1

f (yr |θ)dθdy1 . . . dyR
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= lW

∫

�

∫

{y∈
 : ||To(α,y)−θ ||2≤ε(α,y)}
‖θ − To(α, y)‖2

R∏
r=1

f (yr |θ)dy1 . . . dyRdθ

≤ lW

∫

�

∫




ε(α, y)
R∏

r=1

f (yr |θ)dy1 . . . dyRdθ

= ε(α) · λ(�) · lW.

We have used Hölder’s inequality (with parameter p = 1) by re-writing ‖θ − To(α, y)‖2 =
‖θ −To(α, y)‖2 ·1 and by identifying∏R

r=1 f (yr |θ)dy1 . . . dyR as the (probability) measure.
Hence, for (15a), we obtain

∫

{y∈
 : ||To(α,y)−θ ||2≤ε(α,y)}

∫

�

�
(
d(y), θ

)
w
(
To(α, y)

) R∏
r=1

f (yr |θ)dθdy1 . . . dyR

≤ ε(α) · λ(�) · lW.

The second term, (15b), is estimated by

∫

�

∫

{y∈
 : ||To(α,y)−θ ||2>ε(α,y)}
�
(
d(y), θ

) R∏
r=1

f (yr |θ)dy1 . . . dyRw(θ)dθ

≤
∫

�

∫

{y∈
 : ||To(α,y)−θ ||2>ε(α,y)}

R∏
r=1

f (yr |θ)dy1 . . . dyRw(θ)dθ

=
∫

�

Pθ

(||To(α, ζ ) − θ ||2 > ε(α, ζ )
)
w(θ)dθ

≤ sup
θ∈�

Pθ

(||To(α, ζ ) − θ ||2 > ε(α, ζ )
) ∫

�

w(θ)dθ

= sup
θ∈�

(
1 − Pθ

(
H
(
To(α, ζ )

))) ≤ α,

asw(·) is a probability density and therefore ∫
�

w(θ)dθ = 1 and H
(
To(α, ζ )

)
is a confidence

region at level (1 − α), cf. Remark 2.
2. Case: To unbiased:
In this case, all estimations for the 1. case until (17) remain valid. But then, we change

the estimation of the term (16b) as follows:
∫

{y∈
 : ||To(α,y)−θ ||2≤ε(α,y)}

∫

�

�
(
d(y), θ

)(
w(θ) − w

(
To(α, y)

))

R∏
r=1

f (yr |θ)dθdy1 . . . dyR

≤
∫

�

∫




lW‖θ − To(α, y)‖2
R∏

r=1

f (yr |θ)dy1 . . . dyRdθ

≤ lW

∫

�

√√√√
∫




‖θ − To(α, y)‖22
R∏

r=1

f (yr |θ)dy1 . . . dyRdθ

= lW · std(To) ·
∫

�

dθ = lW · std(To) · λ(�).
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We have used Hölder’s inequality by re-writing ‖θ −To(α, y)‖2 = ‖θ −To(α, y)‖2 ·1 and by
identifying

∏R
r=1 f (yr |θ)dy1 . . . dyR as the (probability) measure. Also we remember (14).

Because the term (15b) is ≤ α and the term (16a) is ≤ 0,

RW
(
B∗(α, ζ )

)− RW
(
d(ζ )
) ≤ α + std(To) · λ(�) · lW (18)

holds. ��

We use the normalization (3) of the function Q(·, ·) in inequality (14). This is the moti-
vation of the normalization of function Q(·, ·).

We make the following comments on Theorem 1 for our data-driven approach towards
stochastic optimization under distributional ambiguity and solutions B∗(α,X):

(i) Theorem 1 is a Bayesian-type result because the bound α + η∗(α) · λ(�) · lW assumes
an a-priori distribution W on �.

(ii) The bound α + η∗(α) · λ(�) · lW is averaged over all possible observations (this is a
unique result).

(iii) The bound depends on four constants: α, η(α), λ(�) and lW. α is a user-controlled
parameter; η(α) depends on the quality of the estimator, see (12); λ(�) is the size of
the parameter space; lW depends on the chosen a-priori distributionW and is controlled
by the user as well.

(iv) The bound improves with smaller α values. This is consistent with our intuition in that
smaller α values yield confidence regions of higher level.

(v) Better estimator(s) also yield(s) smaller bounds because η(α) gets smaller.
(vi) Increasing the “sharpness” of the a-priori distribution yields to a larger bound as the

slope lW of the density increases. This is explained because a sharper distribution puts
more “weight” on a smaller number of parameters θ ∈ �, making it harder for solutions
B∗(α,X) to yield good results for this sharper a-priori distribution.

Next, we draw a connection to classical stochastic optimization where the distribution
function is known, i.e., |P| = 1.

Corollary 1 If only one distribution function is given, i.e., K = 1, then
(BP∗

α(X)
)
reduces to

the baseline stochastic optimization problem (SP). Hence, the (optimality deviation) bound
(α + η∗(α) · λ(�) · lW) = 0 holds.

Proof For K = 1, the estimator To(α,X) = θ̃ and η∗(α) ≡ 0. The confidence level (1−α) =
1. The quantitiesλ(�) and lW are bounded; as the dimension of the parameter θ , d̃ is fixed. The
solution of

(BP∗
α(X)

)
solves (SP) to optimality since the Lebesgue integral in

(BP∗
α(X)

)
with respect to the unique trivial (probability) measure, which gives the singleton θ̃ mass 1,
yields the optimization problem

min
{
Eθ̃

[
Q(x, ξ)

] : x ∈ X

}
.

��

4.2.2 Asymptotic analysis

The idea of the asymptotic analysis is to show that the optimality deviation (α + η∗(α) ·
λ(�) · lW) converges to zero with the number of observations R.
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We have defined R ∈ N as the finite number of i.i.d. observations and ζ = (ξ1, . . . , ξR)

as the corresponding random vector. In the asymptotic case, there is an infinite (and count-
able) set of i.i.d. observations (X1,X2, . . .) and (ξ1, ξ2, . . .) is the corresponding infinite
dimensional random vector. Therefore, we have a sequence

(
x(X1, . . . ,XR)

)
R∈N

of n-dimensional decision variable vectors.
We also must require the sequence of estimators (TR)R∈N to be asymptotically efficient

in the sense that limR→∞ αR = 0, with

αR := sup
θ∈�

Pθ

(||TR(ξ1, . . . , ξR) − θ || > ηR
)

(19)

for some positive null sequence (ηR)R∈N. We denote the set in (19) by

C
(
TR
) := {(ξ1, . . . , ξR, θ) : ||TR(ξ1, . . . , ξR) − θ || > ηR, θ ∈ �

}
.

Clearly, TR corresponds with To, αR with α and ηR with η∗.
In many cases, one can choose as the sequence (ηR)R∈N any null sequence (ηR)R∈N =(

O( 1√
R
)
)
R∈N, i.e., the sequence (ηR)R∈N divided by the sequence ( 1√

R
)R∈N diverges to

infinity. For example, one may choose

ηR = 1
4
√
R

with R ∈ N. (20)

If the parameter is the expected value (i.e., the ξi are random variables) and (TR)R∈N the
sample mean, then, under the corresponding assumptions, the inequality of Chebyshev pro-
vides the convergence of (αR)R∈N to zero. This can be seen as follows. According to the
Chebyshev inequality

Pθ

(||TR(ξ1, . . . , ξR) − θ || > ηR
) = Pθ

(∥∥∥ 1
R

R∑
i=1

ξi − θ

∥∥∥ >
1
4
√
R

)

≤ Var
( 1
R

∑R
i=1 ξi

)

η2R

=
1
RVar(ξ1)

1
(
4√R)2

= Var(ξ1)
2
√
R

= αR

which shows the converges to zero if R tends to infinity.

Corollary 2 We assume that the sequence (lR)R∈N of Lipschitz-constants, corresponding with
lW , is bounded. Normally it converges to zero, as the corresponding calculation for the case
of normal distribution with the mean as parameter shows.

For any given data X and R ∈ N, consider the stochastic optimization problem
(BP∗

α(X))R for confidence region C
(
TR
)

z∗B∗,R(X) := min

{
const ·

∫

C(TR(X))

( R∏
r=1

f (Xr |θ)

)
· Eθ

[
Q(x, ξ)

]
dθ : x ∈ X

}
,
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with constant

const := 1
∫
C(TR(X))

(∏R
r=1 f (Xr |θ)

)
dθ

and solution (B∗(αR,X))R. Then the sequence of solutions (B∗(αR,X))R∈N is asymptoti-
cally optimal for all θ ∈ � (Theorem 1), i.e.,

lim
R→∞

(
αR + ηR · λ(�) · lR

) = 0.

��

4.2.3 The complexity of
(BP∗

˛(X)
)

The complexity of optimization problem
(BP∗

α(X)
)
depends (i) on the shape of the function

Eθ

[
Q(x, ξ)

]
, (ii) the shape of the feasible region X and (iii) the dimension of H̃

(
To(α,X)

)
.

We start by recognizing that the optimization problem
(BP∗

α(X)
)
preserves the convexity

of the original problem, i.e., if the stochastic optimization problem (1) is a convex optimization
problem (for known probability distribution, i.e., given θ ), then

(BP∗
α(X)

)
is also a convex

optimization problem. This holds, because for λ ∈ [0, 1] and x1, x2 ∈ X

∫

H̃(To(α,X))

( R∏
r=1

f (Xr |θ)

)
Eθ

[
Q(λx1 + (1 − λ)x2, ξ)

]
dθ

≤
∫

H̃(To(α,X))

( R∏
r=1

f (Xr |θ)

)(
λEθ

[
Q(x1, ξ)

]+ (1 − λ)Eθ

[
Q(x2, ξ)

])
dθ

= λ

∫

H̃(To(α,X))

( R∏
r=1

f (Xr |θ)

)
Eθ

[
Q(x1, ξ)

]
dθ

+(1 − λ)

∫

H̃(To(α,X))

( R∏
r=1

f (Xr |θ)

)
Eθ

[
Q(x2, ξ)

]
dθ

with density f (·|θ) of ζ for parameter θ , implying that
∏R

r=1 f (Xr |θ) ≥ 0 for allX1, . . . ,XR

and θ .
Problem

(BP∗
α(X)

)
can be solved, for instance, by using a numerical approximation

method for the integral over H̃
(
To(α,X)

)
. The resulting optimization problem falls then

in one of the standard classes, for example, convex nonlinear programming (as in the
computational examples in Sect. 6) or, more generally, mixed-integer nonlinear nonconvex
programming (MINLP) problems. If the resulting optimization problem, after using some
numerical approximation for the integral, is a (non-convex) MINLP, then one can resort to
available off-the-shelf global optimization solvers. Alternatively, the resulting MINLP prob-
lem can be approximated using piecewise linear constructs to yield MILP problems, subject
to any approximation quality [12, 29, 40–43].

For the optimization problem
(BP∗

α(X)
)
to be computationally tractable, it is not suffi-

cient that the stochastic optimization problem (1) is tractable. The reason is that numerical
integration (e.g., when using a cubature formula for dimension≥ 2) gets hard with increasing
dimension of H̃

(
To(α,X)

)
. One is trapped by a curse-of-dimensionality [15].
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5 Bounding the standard Bayesian and the Naïve approach

We next apply the idea of the proof of Theorem 1 towards the Bayesian and the Naïve
Approach.

5.1 The standard Bayesian approach

We start with the definition of the standard Bayesian approach.

Definition 7 For any given data X, consider the data-driven stochastic optimization problem(BP∗(X)
)

z∗B∗(X) := min

{
const ·

∫

�

( R∏
r=1

f (Xr |θ)

)
· Eθ

[
Q(x, ξ)

]
dθ : x ∈ X

}
, (21)

with constant

const := 1
∫
�

(∏R
r=1 f (Xr |θ)

)
dθ

.

The chosen a-posteriori distribution is the uniform distribution on�, i.e., standard Bayesian.
We denote a solution as B(X), called standard Bayesian solution; see also Sect. 2.1 about
the Bayesian approach.

For the standard Bayesian solution B(X), as defined in Definition 7, we derive from
Theorem 1 the following

Corollary 3 We propose the same assumptions and notations as in Theorem 1 and the unbi-
asedness of To. Then, for any distribution W on � with Lipschitz-continuous density w(θ)

and Lipschitz constant lW, it holds that

RW
(
B(ζ )
) ≤ RW

(
d(ζ )
)+ std(To) · λ(�) · lW ∀d ∈ D. (22)

Proof The proof, especially the second part, is analogous to that of Theorem 1.
By definition and using the Lebesgue integral

RW
(
B(ζ )
)− RW

(
d(ζ )
)

=
∫

�

∫




�
(
d(y), θ

) R∏
r=1

f (yr |θ)w(θ)dy1 . . . dyRdθ

=
∫




∫

�

�
(
d(y), θ

)
w
(
To(α, y)

) R∏
r=1

f (yr |θ)dy1 . . . dyRdθ (23)

+
∫




∫

�

�
(
d(y), θ

)(
w(θ) − w

(
To(α, y)

)) R∏
r=1

f (yr |θ)dy1 . . . dyRdθ. (24)

Now we estimate the term (24) as follows:
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∫




∫

�

�
(
d(y), θ

)(
w(θ) − w

(
To(α, y)

)) R∏
r=1

f (yr |θ)dθdy1 . . . dyR

≤
∫

�

∫




lW‖θ − To(α, y)‖2
R∏

r=1

f (yr |θ)dy1 . . . dyRdθ

≤ lW

∫

�

√√√√
∫




‖θ − To(α, y)‖22
R∏

r=1

f (yr |θ)dy1 . . . dyRdθ

= lW · std(To) ·
∫

�

dθ = lW · std(To) · λ(�).

We have used Hölder’s inequality by re-writing ‖θ −To(α, y)‖2 = ‖θ −To(α, y)‖2 ·1 and by
identifying

∏R
r=1 f (yr |θ)dy1 . . . dyR as the (probability) measure. Also we remember (14).

Because the term (23) is ≤ 0 ,

RW
(
B(ζ )
)− RW

(
d(ζ )
) ≤ lW · std(To) · λ(�) (25)

holds. ��
Remark 5 Theorem 1 and Corollary 3 establish the optimization of the mean-risk up to the
bound (α + η∗ · λ(�) · lW) in (13) resp. up to (η · λ(�) · lW) in (22) for an entire class of a-
priori distributions. With other words, B∗(α,X) is the solution of the stochastic optimization
problem under distributional ambiguity, minimizing the mean-risk (up to a constant and for
all a-priori distributions with Lipschitz-continuous density).

The difference of Theorem 1 to the Bayesian approach (as described in Sect. 2.1) is
twofold. First, in the Bayesian approach, the parameter set� is used instead of H̃

(
To(α,X)

)
,

as mentioned above. Second, Bayesian approaches do not involve an estimator To(α,X).

5.2 Optimality bound for the risk

Thekey idea of our newapproach,
(BP∗

α(X)
)
, is the combinationof an a-posterioriBayesian-

like approach with a confidence region around a special estimator. Therefore the derived
optimality bound relates to the mean risks.

In order to obtain also a similar result in the classical sense, i.e., an optimality bound
for the risk with respect to the true parameter, we take now the estimator itself instead of a
confidence region around it. This is the naïve approach, where the uncertainty around the
distribution P is ignored and the best estimator for θ is chosen.

We assume thatwe have an estimator Td = Td(ζ ) for the (true) parameter θ ∈ �, wherewe
rely on the usual definition of an estimator, i.e., a measurable function Td = Td(ζ ) : 
 → �.
We then solve the stochastic optimization problem (SP) for Td(X) instead of θ , which we
call the naïve approach.

Definition 8 For any given data X, consider the data-driven stochastic optimization problem(DP∗(X)
)

z∗Td ,D∗(X) := min
{
ETd (X)

[
Q(x, ξ)

] : x ∈ X

}
. (26)

We denote a solution of the data-driven stochastic optimization problem
(DP∗

Td (X)
)
as

D∗
Td

(X) . ��
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For our analysis, we require the confidence region for estimator Td

Iα(θ) := {||Td(ζ ) − θ ||2 ≤ η(α)
}

(27)

to any confidence level (1 − α). For any θ ∈ �, we set for abbreviation

fR(y|θ) :=
n∏

r=1

f (yr |θ) for y = (y1, . . . , yR) ∈ 
. (28)

We assume the Lipschitz continuity of f (y0|θ) as a function of θ , with Lipschitz-constant
l(y0) for every y0 ∈ ξ(�) and assume that

ld := max
{
l(y0) : y0 ∈ ξ(�)

}
. (29)

exists. With this notation in place, we can derive the bound for the naïve approach.

Corollary 4 Let L(·, ·) be continuous and non-constant on the non-empty compactum X and
let Assumption 2 hold. For any data X, let D∗

Td
(X) be a solution of

(DP∗
Td

(X)
)
. Then, for

any θ ∈ � and any α with 0 < α < 1, it holds that

risk(D∗, θ) ≤ risk(d, θ) + α + ld · η(α) ∀d ∈ D. (30)

Proof Let any θ ∈ � be given. For any feasible decision function d ∈ D and y =
(y1, . . . , yR) ∈ 
, we define for notational convenience

�
(
d(y), θ

) := Eθ

[
Q
(
D∗(y), ξ

)− Q
(
d(y), ξ

)]
.

Then

|�(d(y), θ
)| ≤ 1 ∀y ∈ 
, θ ∈ �, d ∈ D. (31)

By definition and using the Lebesgue integral

risk(D∗, θ) − risk(d, θ)

=
∫




�
(
d(y), θ

)
fR(y|θ)dy1 . . . dyR

=
∫

{y∈
 : ||Td (y)−θ ||2≤η(α)}
�
(
d(y), θ

)
fR(y|θ)dy1 . . . dyR (32a)

+
∫

{y∈
 : ||Td (y)−θ ||2>η(α)}
�
(
d(y), θ

)
fR(y|θ)dy1 . . . dyR . (32b)

The first term, (32a), is re-written as
∫

{y∈
 : ||Td (y)−θ ||2≤η(α)}
�
(
d(y), θ

)
fR(y|θ)dy1 . . . dyR

=
∫

{||Td (y)−θ ||2≤η(α)}
�
(
d(y), Td(y)

)
fR(y|θ)dy1 . . . dyR (33a)

+
∫

{||Td (y)−θ ||2≤η(α)}
�
(
d(y), θ − Td(y)

)
fR(y|θ)dy1 . . . dyR . (33b)

According to the definition of D∗(y),

�
(
d(y), Td(y)

)
fR(y|θ) ≤ 0 (34)

holds for all y ∈ 
. Therefore (33a) is also ≤ 0.
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According to (31) and by using the Lipschitz constant ld , (33b) can be estimated by

∫

{||Td (y)−θ ||2≤η(α)}
�
(
d(y), Td(y) − θ

)
fR(y|θ)dy1 . . . dyR

≤ 1 · ld
∫

{||Td (y)−θ ||2≤η(α)}
‖Td(y) − θ‖2 fR(y|θ)dy1 . . . dyR

≤ ld · η(α)

∫

{||Td (y)−θ ||2≤η(α)}
fR(y|θ)dy1 . . . dyR

= ld · η(α)Pθ

(
||Td(y) − θ ||2 ≤ η(α)}

)
.

Hence, for (32a), we obtain (because the probability is less or equal to one)

∫

{y∈
 : ||Td (y)−θ ||2≤η(α)}
�
(
d(y), θ

)
fR(y|θ)dy1 . . . dyR

≤ ld · η(α).

The second term, (32b), is estimated by

∫

{y∈
 : ||Td (y)−θ ||2>η(α)}
�
(
d(y), θ

)
fR(y|θ)dy1 . . . dyR

≤
∫

{||Td (y)−θ ||2>η(α)}
fR(y|θ)dy1 . . . dyR

= Pθ

(
||Td(y) − θ ||2 > η(α)}

)

≤ α,

first estimation respecting (31) and the last as Iα(θ) := {||Td(ζ )−θ ||2 ≤ η(α)} is a confidence
region at level (1 − α). ��

Corollary 4 is a classical result, in contrast to the Bayesian-type results in Theorem 1 and
Corollary 3, in the sense that it holds for all θ ∈ �. With other words, the bound in (30)
holds for the risk and not the mean-risk.

6 Computational results

The computational results are obtained with GAMS version 24.4.6, where we use LIN-
DOGLOBAL and BARON to solve the resulting non-linear programming (NLP) problems
in Sect. 6.1 and Sect. 6.2, respectively [33, 46]. For the sake of simplicity in the discussions,
we optimize the loss function L(·, ·) directly, instead of the normalized and standardized
expected function E

[
Q(·, ·)]. We approximate the integrals in the optimization problem(BP∗

α(X)
)
via the trapezoidal rule. Together with the convexity of the considered functions

L(·, ·), the resulting optimization problem for
(BP∗

α(X)
)
is convex. Note that solving the

new optimization model
(BP∗

α(X)
)
is computationally more expensive than the Bayesian

approaches, which are in turn more computational expensive than the distributionally robust
optimization approaches, for our tested instances.

123



276 Journal of Global Optimization (2022) 84:255–293

6.1 Production planning & control (PPC): newsvendor problem

Given is the following simplified and stylized production planning & control (PPC) problem,
in this special form also known as the Newsvendor problem, with a single consumer product
to be produced for a single time horizon [18, 32, 58]. The demand is random and follows a
normal distribution with unknown mean μ and known standard deviation of 10; i.e.,

ξ ∼ N (μ, 102).

6.1.1 Illustrative example

We assume that the true mean μ̃ = 50 is unknown. However, we assume knowledge that μ̃

is contained in the interval [a, b] = [40, 55] := � which we discretize with step 0.1, for
computational reasons. This yields a family of 151 normal distributions, i.e.,

�0 = {θ | θ = 40 + 0.1y for some y ∈ {0, 1, . . . , 150}}

P̃ = {N (θ, 102) : θ ∈ �0
}
.

Overproduction leads to inventory cost of c1 = 2 [$/item]; underproduction is allowed
but imposes a penalty of c2 = 10 [$/item]. The cost (or loss) function is then given by

L(x, ξ) := c1[x − ξ ]+ + c2[ξ − x]+ (35)

with [y]+ = max{0, y}. There is no initial inventory and between [l, u] = [25, 100] items
can be produced. For some known random variable ξ ∼ P = N (μ, σ 2), the expected value
of (35) is evaluated as

EP
[
L(x, ξ)

] = (c1 + c2)
σ√
2π

exp− (x−μ)2

2σ2 −c2x + (c1 + c2)(x − μ)FSN
( x − μ

σ

)
+ c2μ

with standard normal CDF FSN(x). Notice that EP
[
L(x, ξ)

]
is a convex function in x and

that both minx∈X,P∈P EP
[
L(x, ξ)

]
and maxx∈X,P∈P EP

[
L(x, ξ)

]
exist, i.e., they are finite.

To evaluate the computed solutions for the true objective function, we define

z(x) := Eθ̃

[
L(x, ξ)

]
. (36)

The optimal solution x∗ as a function of θ is shown in Fig. 3. The corresponding function
values for the true parameter θ̃ = 50 are shown in Fig. 4.

Table 1 summarizes the results of the different stochastic optimization models, as listed in
the first column. The second column reports on their optimal solution; the third column lists
their corresponding objective function value; the fourth column shows their true objective
function value (36), i.e., the computed solution is evaluated by the model with the true
but unknown parameter θ̃ ; the last column presents the gap between the optimal objective
function value and the true objective function value, i.e., gap = (true objective function value
− 29.982)/29.982. The a-posteriori approaches (S2), (S4), (S5), (T1) and (T2) utilize R = 20
realizations1 of ζ . These values are given in the footnote below so that an interested reader
can re-compute all quantities of the illustrative example.

The baseline model is the true model (therefore, the values in column three and four
are identical and the gap in column five is 0%). Thus, the baseline model (B) serves as

1 61.0457983, 61.9744177, 67.7895157, 56.7949099, 48.7586821, 40.4456203, 55.4598745, 39.1465527,
47.8671564, 49.5706960, 35.9694537, 32.0929183, 57.2161088, 67.8262998, 53.1509340, 48.3931528,
42.9176131, 38.3446179, 44.4684806, 30.7752857.
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Fig. 3 Optimal solution x∗ for different values of θ ∈ �0

Fig. 4 Function values of optimal solution x∗ for different values of θ ∈ �0

the benchmark for the 7 different tested stochastic optimization models (S1)-(S5) and (T1)-
(T2). The performance of each tested model is then given by the closeness of their solution
to the true solution x∗ ≈ 59.674 (second column) and the true objective function value
z∗ = z(x∗) ≈ 29.982 (fourth column).

For the a-priori Bayesian model (S1), we use the (discrete) uniform distribution for the
a-priori distribution, i.e., sk = 1/151 for k ∈ {1, . . . , 151}. The corresponding results are
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shown in Table 1. The obtained solution is worse than the three a-posteriori approaches but
slightly better than the other a-priori approach (S3), which is an expected result (but does not
hold in general for any random draw of the realizations) as the a-posteriori approaches take
additional information into account compared to the a-priori approaches; the (DRSP) is a
worst-case approach and, thus, is typically outperformed if the worst-case distribution does
not mature.

In our example, ζ is a continuous random vector. Because ξ1, . . . , ξR are i.i.d. random
vectors, we obtain the a-posteriori Bayesian problem (B(X))

z∗B(X) = min

{
1∑K

j=1(
∏R

r=1 f (Xr |θ j ))s j
·

K∑
k=1

sk

( R∏
r=1

f (Xr |θk)
)
EPθk

[
L(x, ξ)

] : x ∈ X

}
.

Its optimal solution and the function values are reported in row (S2) in Table 1. We observe
that the a-posteriori Bayesian approach outperforms both a-priori approaches: the a-priori
Bayesian and the a-priori distributionally robust stochastic optimizationmodel, whose results
are reported in row (S3).

We choose the sample mean, as our first estimator T1, i.e.,

μ̂1 = 1

R

R∑
r=1

Xr .

Because the standard deviation is known, the sample mean follows the normal distribution

N (μ̂1,
102
R ). This yields the (1 − α) confidence interval

[
μ̂1 − zα

10√
R

, μ̂1 + zα
10√
R

]
(37)

for the true mean μ̃, with the critical value zα of the standard normal distribution. Because
we know that μ̃ ∈ [a, b] ⊂ R, we may truncate the confidence interval (37) to obtain the
(1 − α) confidence interval

[
max

{
a, μ̂1 − zα

10√
R

}
, min

{
b, μ̂1 + zα

10√
R

}]
. (38)

For a second estimator T2, we choose the weighted-moving averagemethod. Its estimator
for μ̃ is given by

μ̂2 =
∑R

r=1 grXr∑R
r=1 gr

with weights or parameters gr ∈ R
+, r = 1, . . . , R. Choosing gr = 1 for all r = 1, . . . , R

reveals that the weighted-moving average method is a generalization of the sample mean.
Estimator μ̂2 is unbiased and follows the normal distribution

N
(

μ̂2, 10
2
∑R

r=1 g
2
r

(
∑R

r=1 gr )
2

)
.

This yields another (1 − α) confidence interval for μ̃, similar to (38).
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We choose as confidence level (1 − α) = 0.95. The weights gr are chosen as a null-
sequence with gr = 1

�r/5� . The 20 data points lead to the following confidence regions

R
(
0.05, T1(X)

) ≈ [44.618, 53.383] and R
(
0.05, T2(X)

) ≈ [47.388, 55.000].
The first confidence interval contains 83 parameters for the mean, while the second contains
77 parameters. For example, when choosing α1 = 0.0178 and α2 = 0.0322, we obtain the
region

I
(
0.05,X) = [47.0, 54.2]

containing 73 distributional parameters. The solution of (DRSPα(X)) for I (α,X) ⊂ �

is reported in row (S4) in Table 1. We observe that (DRSPα(X)) yields a slightly better
solution than the a-posteriori Bayesian model (S2). This might be unexpected because of the
worst-case nature of (DRSPα(X)) but is explained by the incorporation of the additional
information of the estimators T1 and T2.

We obtain as estimator To(α,X) = 50.6. This yields

H̃
(
To(α,X)

) = [47.0, 54.2].
We approximate the integral over H̃

(
To(α,X)

)
, in optimization problem (BP∗

α(X)), via the
trapezoid rulewith 73 trapezoids. This yields a box-constrainedNLP. The obtained solution is
shown in row (S5) in Table 1. We observe that the solution x∗ and the true objective function
value is the best among the seven different stochastic optimization models (S1)-(S5) and
(T1)-(T2) with a gap of 0.02%.

We also compute the results for the naïve approach, using the two estimators T1 and T2.
The sample average yields T1(X) ≈ 49.0004 and for the second estimator T2(X) ≈ 51.1941.
The resulting solutions are then shown in columns (T1) and (T2) in Table 1. Note that the
naïve approach is outperformed by all other a-posteriori approaches (S2), (S4) and (S5).

Next, we study the error bounds from Theorem 1 and Corollaries 3-4. Note that the
derived bounds apply for the normalized expected function E

[
Q(·, ·)]. For the error bound

α + η∗(α) · λ(�) · lW in (13), we restrict the discussions to the sample average as estimator
T0 = T1 alone. Because the half-width of the confidence interval (37) is independent of the
observations (as we assume a known standard deviation), we obtain

ε(α) = E
[
ε(α, ζ )

] ≤ E

[
zα

10√
R

]
= zα

10√
R

.

The sample average is an unbiased estimator of θ̃ with standard deviation

std(T1) = 10√
R

.

Thus,

η∗(α) ≤ min
{
zα

10√
R

,
10√
R

}
= 10√

R

for α ≤ 0.317. The Lebesgue measure λ(�) = 55 − 40 = 15 is the interval length. This
yields

α + η∗(α) · λ(�) · lW ≤ 0.05 + 10√
R

· 15 · lW
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for the Lipschitz constant lW of the density w(θ). Thus, lW is a user input and depends on
the “sharpness” of the imposed measure. For example, for the uniform distribution

lW = 0;
for the triangular distribution with lower limit 40, upper limit 55 and mode 47.5:

lW = 0.017̄;
and the truncated normal with lower limit 40, upper limit 55, meanμW and standard deviation
σW

lW = 1

σ 3
W

√
2π

1

FSN
(
55−μW

σW

)
− FSN

(
40−μW

σW

)exp− 1
2 .

For example, for choices μW = 47.5 and σW = 15, we obtain lW ≈ 0.0001872 for the
truncated normal. With R = 20 and assuming this truncated normal, we obtain for the bound
in Theorem 1

α + η∗(α) · λ(�) · lW ≤ 0.05629. (39)

This yields the bound (22)

std(To) · λ(�) · lW ≤ 0.00629 (40)

for the Bayesian approach, as analyzed in Corollary 3. Both bounds (39) and (40) are for the
mean-risk.

The bound α + ld · η(α) of Corollary 4 is estimated as follows. The Lipschitz constant ld
is bounded by

ld ≤
√
R

σ

1√
2πσ 2R

≈ 4.7 · 10−29

because R = 20 and σ = 10 for our illustrative example; see above. Because η(α) is bounded
and not “too large,” we obtain

α + ld · η(α) ≈ α = 0.05. (41)

Note that (41) bounds the risk (instead of the mean-risk for the other two approaches).

6.1.2 Varying the number of observations and the confidence level

We continue our Newsvendor example by making the following changes: the cost c2 is
reduced from 10 to 7, we choose only one estimator T1 to compute the confidence intervals
around the single parameter μ̃ = θ̃ = 50. This yields a true optimal objective function value
of approx. 26.802. Further, we assume the knowledge of θ̃ ∈ [40, 80], and the parameter
discretization is set to be 0.5, leading to 81 parameters in �0.

We test α = 0.10, 0.05, 0.04 and 0.03 for R = 10, 15, 20, 25, 50, 75, 100, 150 and
200 observations. For each combination, we solve 100 instances. All computed x∗ are then
evaluated by the true objective function (36); this is an out-of-sample performance test. For
α = 0.05, the results are plotted in Fig. 5. Specifically, Fig. 5 plots the objective function
values for the 100 samples for different values of R in decreasing order. These function values
are obtained by the optimal solution x∗ of (BP∗

0.05(X)), evaluated with the true objective
function. For example, for R = 25 observations, 100 random test instances are drawn and
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Fig. 5 True objective function value for (BP∗
0.05(X)) for different numbers of observations R, as evaluated

by (36). The plot shows the results for 100 samples, sorted in decreasing order, of the true objective function
values. Thus, the x-axis shows the (sorted) sample number

the resulting true objective function values are plotted in decreasing order. Note that the
x-axis shows the sample number after sorting in decreasing order for each different value of
R individually.

For our experiments, the solution plots for (B(X)) and (DRSP0.05(X)) look very similar
and largely overlap with the one produced by (BP∗

0.05(X)). We observe in Fig. 5 that
the worst solutions computed among the 100 instances improve with the increase in the
number of observations. This is a very desirable and is the expected behavior of the model
(BP∗

0.05(X)). Further, we note a convergence towards the optimal true objective function
value of approximately 26.802.

The solution of the two a-priori approaches (B) and (DRSP) lead to true objective
function values of approx. 45.3913901 and 45.1890283, respectively. They are far worse
than any of the solutions computed by (B(X)), (DRSPα(X)) and (BP∗

�(X)) for all 3600
instances2. This comes as no surprise, since the interval for θ̃ ∈ [40, 80] is quite large and,
consequently, the value of this information is quite limited.

Table 2 summarizes the computational results for all instances on the three different
a-posteriori approaches (B(X)), (DRSPα(X)) and (BP∗

�(X)). Specifically, columns 3-5
report the number of instances where each single approach yields a smaller true objective
function value than the other two methods, for the computed solutions. Columns 6-8 state
the standard deviation of the 100 computed true objective function values. Note that the a-
posteriori Bayesianmodel (B(X)) does not depend on our choice of α; while the observations
are taken into account via the a-posteriori distribution, the confidence interval is not.

The computational results, as shown in columns 3-5, reveal that none of the three
approaches always dominates any other method. Actually, we argue that each of the three
approaches are valuable and are particularly strong in specific cases.

2 There are 4 different parameter values for α and 9 different values for R, each with 100 instances, yielding
a total of 3600 instances tested.
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Table 2 Comparison of three different a-posteriori approaches

R α # of best obj. func. value Std of 100 obj. func. values(B(X)
) (DRSPα(X)

) (BP∗
α(X)

) (B(X)
) (DRSPα(X)

) (BP∗
α(X)

)

10 0.10 35 14 51 1.9834 1.9464 2.0063

0.05 18 27 55 1.9834 1.9160 1.9859

0.04 14 31 55 1.9834 1.9540 2.0038

0.03 3 42 55 1.9834 1.9147 1.9745

15 0.10 29 24 47 1.3300 1.3201 1.3265

0.05 12 29 59 1.3300 1.3317 1.3315

0.04 17 27 56 1.3300 1.3185 1.3268

0.03 2 39 59 1.3300 1.3331 1.3303

20 0.10 29 23 48 1.1260 1.1440 1.1352

0.05 16 22 62 1.1260 1.1152 1.1482

0.04 11 27 62 1.1260 1.1148 1.1190

0.03 8 30 62 1.1260 1.0863 1.1038

25 0.10 36 24 40 0.7549 0.7568 0.7540

0.05 18 20 62 0.7549 0.7519 0.7503

0.04 17 21 62 0.7549 0.7678 0.7503

0.03 13 31 56 0.7549 0.7730 0.7553

50 0.10 38 31 31 0.3507 0.3540 0.3494

0.05 31 45 24 0.3507 0.3705 0.3534

0.04 22 37 41 0.3507 0.3491 0.3452

0.03 21 35 44 0.3507 0.3460 0.3440

75 0.10 30 35 35 0.2434 0.2450 0.2419

0.05 47 37 16 0.2434 0.2402 0.2404

0.04 30 40 30 0.2434 0.2370 0.2413

0.03 22 47 31 0.2434 0.2571 0.2423

100 0.10 30 38 32 0.1585 0.1482 0.1537

0.05 22 37 41 0.1585 0.1754 0.1573

0.04 21 37 42 0.1585 0.1751 0.1572

0.03 30 45 25 0.1585 0.1488 0.1555

150 0.10 41 34 25 0.1081 0.1123 0.1093

0.05 29 34 37 0.1081 0.1062 0.1038

0.04 41 39 20 0.1081 0.1133 0.1080

0.03 45 44 11 0.1081 0.1164 0.1094

200 0.10 30 39 31 0.0621 0.0628 0.0626

0.05 28 37 35 0.0621 0.0650 0.0612

0.04 26 36 38 0.0621 0.0633 0.0606

0.03 26 36 38 0.0621 0.0632 0.0603

� 888 1194 1518

The numbers in bold are the largest number among the three approaches
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The a-posteriori Bayesian model (B(X)) performs very well whenmany i.i.d observations
are available (e.g., 150 or more). For these cases, all three approaches yield similar results
(while recognizing that the standard deviation between the 100 objective function values is
very small if many observations are available, leading also to small differences between the
three approaches). A big advantage of (B(X)) is that no confidence level and no estimator
has to be chosen. Also, the computational burden in solving (B(X)) is lower compared to
(DRSPα(X)).

The a-posteriori distributionally robust stochastic optimization model
(DRSPα(X)) is particularly strong for the cases where a significant number of i.i.d. obser-
vations are given (e.g., between 100 and 150).

Finally, the newapproach
(BP∗

α(X)
)
yields strong resultswhen relatively fewobservations

are given (e.g., between 10 and 75). The computational effort required in solving
(BP∗

α(X)
)

is similar to (B(X)) if the trapezoidal rule is used.
The results of columns 6–8 in Table 2 quantify the tendency shown in Fig. 5 that the

standard deviation decreases with an increase in the number of observations.

6.2 Reliability: two-dimensional parameter space2

As a second test bed, we consider a reliability problem. Replacing a part in time, i.e., before
it is broken, costs p1 > 0. Once it is broken, the replacement costs increase to p2 > p1. The
goal is to find the optimal time t > 0 to replace the part, minimizing the expected replacement
cost.

The corresponding loss function for the continuous random variable ξ , measuring the time
until failure, is then given by

L(t, ξ) = p1(ξ − t)Iξ≥t (ξ) + p2(t − ξ)Iξ<t (ξ)

= (p1 + p2)ξIξ≥t (ξ) − p2ξ + p2t − (p1 + p2)tIξ≥t (ξ)

with indicator function IA(·) : R1 → R
1. Our goal is to minimize the expected losses

min
t>0

EP
[
L(t, ξ)

]

as a function of t > 0.
For an exponentially distributed random variable ξ ∼ P =EXP(α, λ) with mean α + λ

and density

f (x |α, λ) = 1

λ
exp

(
−1

λ
(x − α)

)
Ix≥α(x),

we obtain for t ≥ α

EP
[
L(t, ξ)

] = (p1 + p2)λ exp

(
−1

λ
(t − α)

)
+ p2 (t − α − λ) .

An optimal replacement time t is obtained at

t∗ = argmint>0 EP
[
L(t, ξ)

] = λ ln

(
p1
p2

+ 1

)
+ α > α

to yield the minimum
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min
t>0

EP
[
L(t, ξ)

] = EP
[
L(t∗, ξ)

] = p2λ ln

(
p1
p2

+ 1

)
,

which is independent of α.
We assume that both parameters α and λ are unknown. This yields the two-dimensional

parameter θ = (α, λ). To obtain a common estimator θ̂ = (α̂, λ̂), we use the maximum
likelihood estimates

(
α̂, λ̂
) =
(

min
r=1,...,R

Xr ,
1

R

R∑
r=1

Xr − min
r=1,...,R

Xr

)

which makes use of our (i.i.d.) realizations X1, . . . ,XR having distribution EXP(α, λ) with
unknown α and λ.

Because α̂ and λ̂ are independent [31], we can use the following confidence regions at
levels (1 − α1) and (1 − α2) for α and λ, respectively,

[
α̂ − r1,R,α1

R
, α̂

]
and

[
λ̂ − r2,R,α2√

R
, λ̂ + r2,R,α2√

R

]

with critical values r1,R,α1 and r2,R,α2 . The distributions, of which the critical values r1,R,α1

and r2,R,α2 are derived, can be taken from the literature [30]. The non-negativity of the
exponential distribution implies that α ≤ α̂ which explains the one-sided confidence interval
for α. An exact confidence region at level (1 − α1) · (1 − α2) for both parameters α and λ

jointly, is then obtained by
[
α̂ − r1,R,α1

R
, α̂

]
×
[
λ̂ − r2,R,α2√

R
, λ̂ + r2,R,α2√

R

]
. (42)

6.2.1 Varying the number of observations and the confidence level

For our computational experiments, we choose θ̃ = (α̃, λ̃) = (25, 100) with cost p1 =
61.6575 and p2 = 123.315 to yield t∗ ≈ 65.5 and mint>0 Eθ̃

[
L(t, ξ)

] ≈ 5000.0. The
integral in (11), to obtain (BP∗

α(X)), is solved using the two-dimensional trapezoidal rule.
For our first computational tests, we further assume

� = [15, 40] × [60, 130] (43)

which we discretize using 40 and 100 parameter values to obtain�0. The confidence interval
(42) is then updated to

[
max
{
15, α̂ − r1,n,α1

n

}
, min

{
40, α̂

}]

×
[
max
{
60, λ̂ − r2,n,α2√

n

}
, min

{
130, λ̂ + r2,n,α2√

n

}]
. (44)

It is theoretically possible, that the (1− α1) · (1− α2) confidence interval (44) is empty; that
did not occur in our tests of over 42,000 instances (as reported in Tables 3 and 4, see below).

Figures 6 and 7 plot the expected loss functions for different parameter configurations of
λ and α within the safe interval (43). The horizontally dotted lines show the optimal t∗ values
for each parameter configurations. The graphs for λ = 100 and α = 25 in Figs. 6 and 7 show
the true expected loss function, against which we compare the computed t values (for the
three different a-posteriori approaches tested). The figures show that (i) the loss functions are
smooth in t for different parameter configurations λ and α, (ii) the optimal values for t vary
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Fig. 6 Function plot for different values of λ and fixed α = 25. The corresponding optimal t∗ is shown as
well for each parameter combination

quite significantly for the different parameter values shown in the two figures, ranging from
approx. 49.33 to 80.55. Even though the true objective function (yellow curve in Fig. 6 and
red curve in Figure 7) is smooth, the true objective function values differ quite significantly
when evaluating different values of t .

Table 3 shows the results for the different computational tests performed for the reliability
example. The setup of the experiments is similar to the ones reported in Table 2, while we
use 1000 instances in Table 3 compared to 100 instances of Table 2. Column 1 shows the
number of draws, R. The values of α1 and α2 are reported in column 2, while columns 3-5
report the number of instances where each approach yielded a better expected loss, i.e., the
computed t was inserted in the true objective function value with the true parameters θ̃ . The
last three columns show the standard deviation of the true objective function values for the
1000 different runs.

Most notably, the proposed solution
(BP∗

α(X)
)

outperforms both the
a-posteriori distributionally robust and Bayesian approaches consistently and considerably.
The new approach yielded the best true objective function values among the three approaches
in over 87% of the 36000 instances. In general,

(BP∗
α(X)

)
does particularly well for 50, 75

and 100 i.i.d. data points. We observe that the standard deviation of the true objective func-
tion values evaluated at the computed solutions for all approaches tends to decrease with
the number of available data points, i.e., with increasing R. This behavior is expected as
more realizations leads to smaller confidence regions which in turn should lead to smaller
variations in the computed optimal time t .

The a-posteriori Bayesian approach has a much lower standard deviation (column 6 in
Table 3) compared to the two other a-posteriori approaches. In general, a lower standard
deviation is a desired property, but only when it comes together with better objective function
values. This is not the case for the a-posteriori Bayesian approach. In contrast, the standard
deviation for the new approach (column 8) is always smaller compared to the a-posteriori
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Fig. 7 Function plot for different values of α and fixed λ = 100. The corresponding optimal t∗ is shown as
well for each parameter combination

distributionally robust optimization approach,while having better objective function values—
a desirable property.

One might expect that the a-posteriori distributionally robust approach is better for such
cases, where one of the true parameters α̃ and λ̃ lies outside the confidence interval. This
is the case with probability α1 + α2 − α1 · α2. For example, for α1 = α2 = 0.075 and
α1 = α2 = 0.100 this leads to probabilities of 0.9375 and 0.81, respectively. Thus, for
1000 independent instances, we expect that the a-posteriori distributionally robust approach
outperforms the other two approaches at about 73 and 190 instances, for α1 = α2 = 0.075
and α1 = α2 = 0.100, respectively. As the results in Table 3 reveal, this is only rarely the
case. That the solution of the new approach,

(BP∗
α(X)

)
, tends to outperform the a-posteriori

distributionally robust approach even in such cases where at least one of the true parameters
lies outside of the confidence interval further illustrates the strengths of the new approach.

6.2.2 Varying the safe interval

Next, we study the computational effects when varying the safe interval (43) as

� = [α, ᾱ] × [λ, λ̄]. (45)

Therefore, consider Table 4 which shows experiments for R = 20 data points. The results
indicate that the particular choice of the safe interval influences the relative results of the
three approaches; this comes at no surprise as the (1−α1) · (1−α2) confidence interval (44)
directly depends on the safe interval. With smaller safe intervals (43), both the a-posteriori
Bayesian and the a-posteriori distributionally robust approaches tend to improve. Despite that
trend, even for as small intervals as [20, 30]×[80, 110], the new approach does considerably
and consistently better. The relative improvement of both the a-posteriori Bayesian and
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a-posteriori distributionally robust optimization approaches is explained by the decreasing
leeway.Very small safe intervals favors a-posterioriBayesian approaches as their solutions get
closer to

(BP∗
α(X)

)
; this can also be observed by comparing the results of α1 = α2 = 0.075

with the smaller confidence intervals resulting from α1 = α2 = 0.100.

7 Conclusions

We present a new data-driven approach towards stochastic optimization under distributional
uncertainty. The proposed approach uses observations to construct confidence regions. We
then apply an a-posteriori Bayesian approach towards this confidence region. This yields a
new data-driven stochastic optimization problem.

The careful construction of the confidence region around an appropriate estimator allows
us to analyze the quality of the solutions obtained when taking the expected values of all
observations and all a-priori distributions. The derived optimality bound provides various
insights on the quality of the obtained solutions. For example, this bound improveswith better
estimators and the bound converges to zero in the number of observations. If the distribution
is known, i.e., the family of distributions reduces to a singleton, then the proposed approach
is identical to the standard stochastic optimization problem. In this case, the aforementioned
constant is zero. Our computational results shows that solutions of the proposed data-driven
stochastic optimization problems can be superior to solutions of data-driven Bayesian and
data-driven distributionally robust stochastic optimization approaches.

Future research might attempt to derive data-driven stochastic optimization problems
which minimize the derived bound, though it remains unclear how this can be achieved.
Another research direction is to search for a novel type of robustness. Robustness is then
understood as the criterion that optimality holds for an entire environment of a-posteriori
distributions, for a suitable distance-measure in the space of probability distributions. Then,
the new model can be designed with the aim to produce the best compromise between the
maximal distance and the resulting bound.
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